General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

N/SA
 Technical Memorandum 84966

THE SOURCE OF SATURN ELECTROSTATIC DISCHARGES: ATMOSPHERIC STORMS

M. L. Kaiser, J. E. P. Connerney and M. D. Desch

JANUARY 1983

National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

THE SOURCE OF SATURN ELECTROSTATIC DISCHARGES: ATMOSPHE:IC STORMS
M.L.Kaiser, J.E.P. Connerney, and M.D. Desch

Laboratory for Extraterrestrial Physics Goddard Space Flight Center, Greenbelt, Maryland 20771,USA

Submitted to Nature

Important properties of the recently-disoovered Saturn Electrostatic Discharges are entirely consistent with an extended lightning storm syatem in Saturn's atmosphere. The presently favored Baring location is ruled out.

The Voyager spacecraft planetary radio astronomy (PRA) experiments detected an unusual impulsive ($15-400$ msec), broadband (20 kHz to 40 MHz) radio emission component !hat persisted throughout the two Saturn encounter periods ${ }^{1,2}$. These short bursts of emission tended to be grouped into episodes which recurred with a period of about 10 h 10 m , distinctly faster than the Saturnian rotation period of $10 \mathrm{~h} 39.4 \mathrm{~m}^{1-5}$. This periodicity considered together with the occurrence dependence on distance from Saturn led Warifick et al. ${ }^{1}$ to conclude that the bursts were related to the Saturn system and coined the term SED for Saturn Electrostatic Discharges. Only two source locations were deemed possible ${ }^{1}$ based on the repetition period: the atmosphere at equatorial latitudes where ground-based Doppler measurements ${ }^{6}$ and Voyager imaging measurements ${ }^{7,8}$ show cloud top wind velocities corresponding to a 10 h 10 m rotation period, and a discrete source in the rings at $1.8 R_{s}$ ($R_{s}=$ Saturn radius $=60330 \mathrm{~km}$) where the Keplerian revolution period equals 10 h 10m. Atmospheric source locations inftially were ruled out ${ }^{1}$ because the ionospheric electron density measured by the radio science experiments on the Pioneer 11 and Voyager spacecraft ${ }^{9-11}$ was sufficient to prevent escape of emission much below 1 MHz , whereas SED were sometimes detected to frequencies as low as 20 kHz. Several papers were then published ${ }^{2-5}$ discussing the ring source alternative. However, Burns et al. ${ }^{12}$ pointed out that the ring system casts a
large shadow on the equatorial ionosphere, perhaps reducing the fonospherio eleotron density in this region enough to pernit escape of the low frequency atmosheric (e.E. thunderstorm) radio noise. However the weight of ovidence atill appeared to favor the ring-source hypothesis and no evidence has been brought forth until now to resolve this controversy.

We have analysed the SED observations with particular attention given to the spaceoraft-Saturn geosetry during the Voyager-1 encounter. We conclude that SED are not generated by a looalized or distributed source in Keplerian orbit about the planet but appear to be the manifestation of a long-lived atmospheric storm or system of storms in Saturn's equatorial zone extending some 60 degrees in Saturn longt'iude.

SED Episodes

Figure la is a schematic diagram of the occurrense of SED as a function of time and frequency during the period immediately surrounding the Voyager 1 encounter. This summary was constructed from visual inspection of high resolution dynamic spectrograms; thus it does not suffer from misidentification of spacecraft interference to which computer SED recognition algorithms are subject. (The comparable plot from Voyager-2 is not as well ordered due to the lower occurrence rate of SED and the somewhat poorer definition of SED episodes. This difference between Voyager-1 and Voyager-2 results is discussed later.) There are three features of crucial importance evident in Fig. la:
(1) the frequency extent of SED varies systematically with time. For the two
 Fis. In). the SSD are not obeorved below approsimately ther. Durite the olosest approach interval and for all opisodea after closent appronoh, SXD are detected to frequenciea at least as 10 m as 100 kliz .
(2) outside of the shaded intervals in Fis. la, oloee sorutiny of the high resolution PRA data shows that there are indeed NO deteotable SED.
(3) the appearances and disappearances of SED episodes are independent of frequency except for the onset of the episode centered on closest approach. For this one onset, SED are first deteoted at the higheat PRA frequencies near 40 Hfz and gradually over a 4 hour period fill the entire band. This last feature has been noted previously ${ }^{3}$.

Problems with Previous Theories

The total lack of SED between eplsodes strongly suggests that the source region is being ocoulted once per revolution by the planet. The typical duration of the "occultations" in Fig. la is greater than 3 hours, or roughly one third of the period of SED. even when the motion of the spacecraft past Saturn is taken into account. This duration corresponds to roughly 120 dsgrees of the SED "orbit". If indeed the pattern shown in Fig. la represents a source undergoing consecutive occultations, then an isotropioally radiating point source at $1.8 \mathrm{R}_{\mathrm{g}}$ suggested by Waruick et al. ${ }^{1,2}$ and Evans et a1. ${ }^{3-5}$ is not posaible because such an object would be out of view for only about 2 hours or less. Figure id shows the ocoultation pattern that would result from a point source in the B-ring at $1.8 \mathrm{R}_{\mathrm{s}}$ aligned so that ita reappearance time antoh
the obsarvation in Fis. In. The blaok bade corroapond to time when the souroe hhould be in view from Voyeger and the intervals in between are tines when the souroe should be coculted by the planet. On the other hand, a point source in the equatorial atmosphere would be beyond Voyager's horison for considerably more than 180 degrees of rotation (or more than 5 hours) unless SED are somehow able to transalt over the horizon. This eliainates the possibility of a single localised storm in the equatorial atmosphere producing SED. Figure ic shows the occultation pattern to be expected from a single isolated storm in the equatorial region. Additionelly, the 4 Miti low frequency outoff observed before closest approach is extremely difficult to explain with a ring source due to the lack of intervening high density plasma, although for an atmospheric source, radio emission would necessarily pass through the
 observed cutorf.

Equatorial Lightning Storms

We can see no way in waich the ring source theory can be modified so that all three of the previoualy mentioned observed parameters can be met. An extended source in the rings, for example, would be occulted even less than a point source. Some modification to the assumed isotropic radiation pattern might be invoked to explain the duration of the occultations, but this cannot explain the low frequency cutoff. We propose instead that the SED are generated by a storm system in Saturn's equatorial region atmosphere spread over an extended awath in longitude. We determine the longitude of the leading edge of the storm from any of the reappearance times shown in Fig. la, and similarly, we find the longituds of the trailing odge from any of the disappearance times.

Since this storm aystem noves at a rate different from the planetary rotation rate of 10 h 39.4 m , our deteralnation of the stora's longitude in the Saturn longitude system ${ }^{13}$ applies to a specific time. We have determined the storn's boundaries as 210 and 270 degrees SLS for the leading and trailing edges, respectively at the epooh 15:10 (apaceoraft time) on day 317 of 1980. Using the Voyager trajectory information to determine the occultation times of this storm system as observed from Voyager, we obtain the schematic pattern shown In Fig. 1b. Here, the black bands represent times when all or part of the 60 degree-wide source region is within view of the spacecraft, and the intervals in between are times when the source region is completely occulted by Saturn. The remarikable degree of similarity between Fig. la and Fig. ib contrasted with the lack of agreement between Fig. la and efther Figs. ic or id strongly suggests that the disappearance and reappearance of SED is caused by occultation and reemergence of an extended equatorial storm system.

In addition to locating the storm in longitude, some restrictions can be placed on its latitudinal extent. The uncertainty in tive SED period of +5 min ${ }^{2}$ corresponds to an equatorial cloud top wind speed range of $\pm 80 \mathrm{~m} / \mathrm{sec}$. Inspection of the Voyager-1 wind velocity profile deduced from the imaging data ${ }^{7}$ indicates that the storm must be centered at the latitude of peak wind which is +4 degrees. The spread in latitude centered on +4 degrees which corresponds to $\pm 80 \mathrm{~m} / \mathrm{sec}$ is only about \pm^{2} degrees. However, no wind velocity data is shown for the latitude band obscured from view by either the rings or the shadow of the rings, so the possibility exists that SED may emanate from that region.

As mentioned previously, the observed low-frequency cutoff is also consistent
with propagation of radio waves through the Saturnian ionosphere. Prior to enoounter, when only frequenoies greater then about 4 Miz are observed, Voyager-1 was above the daylit hemisphere of Saturn, at a near-equatorial latitude and midway between the noon meridian and dusk. The radio emission generated by the storm system would necessarily propagate through the dayside Saturnian ionosphere in order to reach the spacecraft. Since radio waves cannot propagate at frequencies below the electron plasma frequency, we propose that the low frequency cutoff of the SED is caused by high electron densities in the dayside Saturnian ionosphere. The maximum electron density is estimated from $f_{p}=9 N_{e}^{1 / 2}$ where f_{p} is the electron plasma frequency in kilohertz and N_{e} is the electron density in electrons per cm^{3}. Equating the 4 MHz cutoff to the plasma frequency, the implied maximum electron density in the ionosphere at the sub spacecraft point is $2 \times 10^{5} \mathrm{~cm}^{-3}$. This is about an order of magnitude larger than the electron densities deduced from radio occultation measurements $9-11$. However, those measurements were made near the dawn and dusk terminators, whereas the density derived here applies to mid afternoon. This change in density from terminator to mid afternoon is comparable with the diurnal variation of electron density observed at the earth ${ }^{14}$. Only during and after the closest approach are the very low frequency (< 100 kHz) SED observed. It is also during this period that Voyager observes the storms through the nightside ionosphere. This implies a maximum electron density in some portions of the nightside ionosphere of $100 \mathrm{~cm}^{-3}$ or less, again not inconsistent with day-night variations for some parts of the earth's ionosphere ${ }^{14}$.

The frequency dependent onset of SED observed just prior to closest approach can also be understood in terms of an atmospheric source. Figure 2 shows an
equator plane projection of the Voyager-1 trajectory during the near enoounter period. Inset in Fis. 2 are three view of Saturn and the atora ayatem as meen from Voyager-1 at the indicated times. Panel (a) correaponds to the view about 1 hour after the reappearance of SED when the leading edge of the atorm ayatem (fixed at the location desoribed above) has just become visible. The radio emisaion accompanying this storm system transmits through a long path in the lonosphere when it first appears on the observer's horizon resultins in considerable refraction. We have performed ray tracing analyses whioh demonstrate that high frequencies ($>30 \mathrm{MHz}$) are able to propagate directly to the spacecraft even when the storm is on the limb, whereas inwer frequencies are refracted away from the line of sight. As the planet rotates, the path Arom the leading edge of the storm to Voyager travels through progressively less ionosphere so that less refraction occurs permitting lower and lower frequencies to be observed. This frequency dependence of SED onset times should occur to some extent for all reappearances and disappearances; however, With the exception of this ore occasion near closest approach, this effect is not observed. Since the storm system rotates every 10 h 10 m , the angular velocity is such that in twenty minutes the storm has moved off the limb by nearly 12 degrees. This is enough to permit even the lowest frequencies (4 MHz) to be observed and corresponds to an onset drift rate of about 1.5 MHz per minute. A drift rate this large is not discernable in the SED data due to the sparsity of SED near the reappearance and disappearance times and the complicated, frequency-dependent sensitivity pattern of the PRA instrument. However, during the period near closest approach, the Voyager-1 spacecraft was moving at a rapid enough apeed around the planet to nearly matoh the planetary rotation speed. Thus, the SED source spent a much longer time travelling across the visible face of Satum than during any other episode, long enough
to senorate the obaerved 0.2 Mis per ainute onset drift rate. Panel(b) of Fis. 2 shows the looation of the atorm aystem some three hours after panel (a). The leading edge of the systea has yot to reach the contral meridian, whereas noreally the center of the storm system would be on the central meridian.

Panel (b) also corresponds to the time when SED are firat detected down to 100 kHz, indioating a very low ionospheric electron density. Notice that the leading portion of the storn syatem is on the dark alde of the planet. Radio occultation measurements of electron density in the ionosphere at the dusk terminator show values corresponding to cutoff frequencies of 600 to $800 \mathrm{kHz}^{9-11}$. We propose that these values must drop substantially shortly after sunset so that by one hour after sunset 100 kHz radio emission can propagate to the spacecraft.

Panel (c) shows the view of Saturn 30 min before the disappearance of SED. The storm system has nearly completed one rotation around the planet from panel (a), and its leading edge is already beyond the limb, with the trailing edge rapidly approaching the limb. By now the Voyager spacecraft has moved past local midnight and is receeding from Saturn very nearly radially so that the apparent motion of the trasting edge of the storm is again at full value and no frequency dependence is observed during the disappearance.

In addition to the occultation evidence, SED are consistent with atmospheric storms in at least two other ways. First, the total power radiated in an SED burst can range from 10^{7} watts ${ }^{\prime}$ to more than 10^{10} watts ${ }^{5}$. Inis is within the normal range of power emitted during a terrestrial lightning stroke ${ }^{15}$. Second, we have determined that the SED burst durations are distributed according to
an exponential law with an efolding time of 57 alllisweond for both Voyeger data sots. The average duration from this diatribution is 57 eillieeoonde and the modis: duration is 39 milliseoonds. Ruatan and Moreau ${ }^{16}$ have determined that the average duration of radio eaisaion aocompanying terrestrial lichtaing at 63 MHz is 34 milliseconds.

Discussion

We belleve the analysis presented above forma compelling argument that SED are generated by storms in Saturn's equatorial atmosphere. However, there are still some unanswered questions which will need further analyais. For example, why are there differences in the SED occurrence rate and discreteness of the SED episodes between Voyager-1 and Voyager-2? Why is the storm system observed during the Voyager-1 confined to only 60 degrees in longitude?

If the same storm system was observed during both Voyager encounters, then the system appears to have dispersed and weakened somewhat during the intervening 9 months. Two points in the equatorial region will spraad apart during 9 months by about 2.2 degrees in longitude for each meter pir second difference In their velocities, so only a very small latitude extent in the storm aysten would suffice to disperse the storm. If the SED observed by Voyager-2 are from the same storw syatem as those detected by Yoyager-1, perhaps the syatea was formed only a short time prior to the Voyager-l encounter. We note that the sun passed through the Saturnian rins plane in early Maroh of 1980 , thus the shadow of the rings on the atmosphere slowly changed frem the Morthern hemisphere to the Southern beniaphare. Porbape the sulowequant large obangee in temperature and acocmpanyins turbulonoe botween ounilt and sadouec portions
of the dayaide atmoghere are able to tricger atorms. If thia atore ayatem had Its birth at the beginaiug of March as aingle atorm, then its longtude dispersion of 60 degrees by the tise of the Voyager-i encounter would imply a yelooity apread of only 3 m/aec, corresponding to much less than 1 degrese of latitude extent ${ }^{7}$.

Of course, it is also entirely possible that the SED observed diring the Voyager-2 encounter are from a different storm system than that observed by Voyager-1. This would imply that a given atorm systen has a lifetime longer than the several days of an encounter period, but shorter than the 9 monthe tetweon encounters.

In either case, it is clear that the PRA observations of SED have contributed unexpectedly to the study of Saturn's atmosphere and ionosphere. Our proposed storm model for the source of SED explains the oscurrence pattern and frequency-deperdence of SED, and does not invoke exotic or unexplained physical phenomena required by the ring source theories ${ }^{3-5}$.

Beforencea

1. Wamıak, J. W. et a1. Sotenot 212, 239-243 (1981).
2. Harwick, J. W. et al. Sciance 215, 532-587 (1982).
3. Evans, U. R. et al. Mature 292, 716-718 (1981).
4. Evans, D. R. et al. Mature 299, 236-237 (1982),
5. Evans, D. R. et al. Icarus, in press (1983).
6. Moore, J. H. Pub Astrone Soce Pace 51, 274-281 (1939).
7. Smith, B. A. et ai. Science 212, 163-191 (1981).
8. Smith, B. A. et al. Science 215, 504-537 (1982).
9. Kliore, A. J. et al. Sciance 207, 446-449 (1980).
10. Tyler, G. L. et 2l. Science 212, 201-206 (1981).
11. Tyler, G. L. ot al. Science 215, 553,558 (1982).
12. Burns, J. A. Iearus, in press (1983).
13. Desch, M. D. and Kaiser, M. L. Geophyse Res, Lett, 8, 253-256 (1981).
14. Bauer, S. J. Physios of Planetary Iononphorea 178-194 (Springer - Verlag, New York 1973!.
15. Krider, E. E. and Gru, C. EOS 63, 890 (1992).
16. Rustan, P. L. and Moreau, J. P. EOS 63, 889 (1982).

Fig. 1. Comparison of observed and predicted recurrence patterns for the five SED episodes centered on Voyager 1 olosest approach. Panel (a) shows schematically the times and frequencies where SED were dete,ted (black) and undetected (white) by Voyager 1. Before and almost up to the time of closest approach (CA) no SED are seen below about 4 MHz . After CA, SED are regularly seen down to and even below 100 kHz . Panels (b), (c), and (d) compare the predicted recurrence patterns for a 60 deg wide atmospheric storm system, a single (point source) atmospheric storim, and a point source in the rings, respectively. The agreement between the observed and predioted start/stop times for the 60 deg wide surface storm (b) is clear. Note especially the coincidence between start and stop times in the case of the episode centered or CA, which lasts * 3 hrs longer than any other episode. The single-storm model (c) consistently predicts shorter episodes than those observed by $\mathbf{- 2}$ hrs, and the ring source model (d) consistently predicts longer episodes by $\mathbf{- 2}$ hrs.

Fig. 2 Voyager 1 trajectory past Saturn is snown projected into the equatorial plane. The shaded globes show the planetary aspect and SED source location as viewed by Voyager 1 at trree t.!mes near closest approach. On day 317 at 1950 SCET, the source reappears on the west limb of the planct, marking the onset of the third episode in Fig. 1. At 2100 SCET (panel (a)), the leading edge of the source is about 30 deg beyond the west $11 \mathrm{mb} ; a \pm 0000$ SCET (b), the leading edge is about 50 deg beyond the liab and well into the nightside hemisphere, permitting escape of very low frequency ($<1 \mathrm{MHz}$) SED; by 0600 SCET (c), the trailing edge of the source is near the eastern limb, close to disappearing
beyond the spaceoraft horizon. AT 0625 SCET the episode ends as the source disappears from Voyager's viow.

ORIGINAL PAEE IS OF POOR QUALITY

Figure 1

