61 research outputs found

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4

    Mutations in the cardiac myosin binding protein-c gene on chromosome 11 cause familial hypertrophic cardiomyopathy

    No full text
    Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant disorder manifesting as cardiac hypertrophy with myocyte disarray and an increased risk of sudden death. Mutations in five different loci cause FHC and 3 disease genes have been identified: beta cardiac myosin heavy chain, alpha tropomyosin and cardiac troponin T. Because these genes encode contractile proteins, other FHC loci are predicted also to encode sarcomere components. Two further FHC loci have been mapped to chromosomes 11p13-q13 (CMH4, ref. 6) and 7q3 (ref. 7). The gene encoding the cardiac isoform of myosin binding protein-C (cardiac MyBP-C) has recently been assigned to chromosome 11p11.2 and proposed as a candidate FHC gene. Cardiac MyBP-C is arrayed transversely in sarcomere A-bands and binds myosin heavy chain in thick filaments and titin in elastic filaments. Phosphorylation of MyBP-C appears to modulate contraction. We report that cardiac MyBP-C is genetically linked to CMH4 and demonstrate a splice donor mutation in one family with FHC and a duplication mutation in a second. Both mutations are predicted to disrupt the high affinity, C-terminal, myosin-binding domain of cardiac MyBP-C. These findings define cardiac MyBP-C mutations as the cause of FHC on chromosome 11p and reaffirm that FHC is a disease of the sarcomere

    Neuroblastomas vary widely in their sensitivities to herpes simplex virotherapy unrelated to virus receptors and susceptibility

    No full text
    Item does not contain fulltextAlthough most high-risk neuroblastomas are responsive to chemotherapy, relapse is common and long-term survival is <40%, underscoring the need for more effective treatments. We evaluated the responsiveness of 12 neuroblastoma cell lines to the Deltagamma134.5 attenuated oncolytic herpes simplex virus (oHSV), Seprehvir (HSV1716), which is currently used in pediatric phase I trials. We found that entry of Seprehvir in neuroblastoma cells is independent of the expression of nectin-1 and the sum of all four known major HSV entry receptors. We observed varying levels of sensitivity and permissivity to Seprehvir, suggesting that the cellular anti-viral response, not virus entry, is the key determinant of efficacy with this virus. In vivo, we found significant anti-tumor efficacy following Seprehvir treatment, which ranged from 6/10 complete responses in the CHP-134 model to a mild prolonged median survival in the SK-N-AS model. Taken together, these data suggest that anti-tumor efficacy cannot be solely predicted based on in vitro response. Whether or not this discordance holds true for other viruses or tumor types is unknown. Our results also suggest that profiling the expression of known viral entry receptors on neuroblastoma cells may not be entirely predictive of their susceptibility to Seprehvir therapy
    corecore