53 research outputs found

    Primordial Nucleosynthesis for the New Cosmology: Determining Uncertainties and Examining Concordance

    Full text link
    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) have a long history together in the standard cosmology. The general concordance between the predicted and observed light element abundances provides a direct probe of the universal baryon density. Recent CMB anisotropy measurements, particularly the observations performed by the WMAP satellite, examine this concordance by independently measuring the cosmic baryon density. Key to this test of concordance is a quantitative understanding of the uncertainties in the BBN light element abundance predictions. These uncertainties are dominated by systematic errors in nuclear cross sections. We critically analyze the cross section data, producing representations that describe this data and its uncertainties, taking into account the correlations among data, and explicitly treating the systematic errors between data sets. Using these updated nuclear inputs, we compute the new BBN abundance predictions, and quantitatively examine their concordance with observations. Depending on what deuterium observations are adopted, one gets the following constraints on the baryon density: OmegaBh^2=0.0229\pm0.0013 or OmegaBh^2 = 0.0216^{+0.0020}_{-0.0021} at 68% confidence, fixing N_{\nu,eff}=3.0. Concerns over systematics in helium and lithium observations limit the confidence constraints based on this data provide. With new nuclear cross section data, light element abundance observations and the ever increasing resolution of the CMB anisotropy, tighter constraints can be placed on nuclear and particle astrophysics. ABRIDGEDComment: 54 pages, 20 figures, 5 tables v2: reflects PRD version minor changes to text and reference

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4

    Overview of the Alaskan Layered Pollution and Chemical Analysis (ALPACA) Field Experiment

    Get PDF
    The Alaskan Layered Pollution And Chemical Analysis (ALPACA) field experiment was a collaborative study designed to improve understanding of pollution sources and chemical processes during winter (cold climate and low-photochemical activity), to investigate indoor pollution, and to study dispersion of pollution as affected by frequent temperature inversions. A number of the research goals were motivated by questions raised by residents of Fairbanks, Alaska, where the study was held. This paper describes the measurement strategies and the conditions encountered during the January and February 2022 field experiment, and reports early examples of how the measurements addressed research goals, particularly those of interest to the residents. Outdoor air measurements showed high concentrations of particulate matter and pollutant gases including volatile organic carbon species. During pollution events, low winds and extremely stable atmospheric conditions trapped pollution below 73 m, an extremely shallow vertical scale. Tethered-balloon-based measurements intercepted plumes aloft, which were associated with power plant point sources through transport modeling. Because cold climate residents spend much of their time indoors, the study included an indoor air quality component, where measurements were made inside and outside a house to study infiltration and indoor sources. In the absence of indoor activities such as cooking and/or heating with a pellet stove, indoor particulate matter concentrations were lower than outdoors; however, cooking and pellet stove burns often caused higher indoor particulate matter concentrations than outdoors. The mass-normalized particulate matter oxidative potential, a health-relevant property measured here by the reactivity with dithiothreiol, of indoor particles varied by source, with cooking particles having less oxidative potential per mass than pellet stove particles

    The economic well-being of nations is associated with positive daily situational experiences

    Get PDF
    People in economically advantaged nations tend to evaluate their life as more positive overall and report greater well-being than people in less advantaged nations. But how does positivity manifest in the daily life experiences of individuals around the world? The present study asked 15,244 college students from 62 nations, in 42 languages, to describe a situation they experienced the previous day using the Riverside Situational Q-sort (RSQ). Using expert ratings, the overall positivity of each situation was calculated for both nations and individuals. The positivity of the average situation in each nation was strongly related to the economic development of the nation as measured by the Human Development Index (HDI). For individuals’ daily experiences, the economic status of their nation also predicted the positivity of their experience, even more than their family socioeconomic status. Further analyses revealed the specific characteristics of the average situations for higher HDI nations that make their experiences more positive. Higher HDI was associated with situational experiences involving humor, socializing with others, and the potential to express emotions and fantasies. Lower HDI was associated with an increase in the presence of threats, blame, and hostility, as well as situational experiences consisting of family, religion, and money. Despite the increase in a few negative situational characteristics in lower HDI countries, the overall average experience still ranged from neutral to slightly positive, rather than negative, suggesting that greater HDI may not necessarily increase positive experiences but rather decrease negative experiences. The results illustrate how national economic status influences the lives of individuals even within a single instance of daily life, with large and powerful consequences when accumulated across individuals within each nation

    Shear Localization in Dynamic Deformation: Microstructural Evolution

    Full text link
    • 

    corecore