61 research outputs found

    Sparticle Spectra and LHC Signatures for Large Volume String Compactifications

    Full text link
    We study the supersymmetric particle spectra and LHC collider observables for the large-volume string models with a fundamental scale of 10^{11} GeV that arise in moduli-fixed string compactifications with branes and fluxes. The presence of magnetic fluxes on the brane world volume, required for chirality, perturb the soft terms away from those previously computed in the dilute-flux limit. We use the difference in high-scale gauge couplings to estimate the magnitude of this perturbation and study the potential effects of the magnetic fluxes by generating many random spectra with the soft terms perturbed around the dilute flux limit. Even with a 40% variation in the high-scale soft terms the low-energy spectra take a clear and predictive form. The resulting spectra are broadly similar to those arising on the SPS1a slope, but more degenerate. In their minimal version the models predict the ratios of gaugino masses to be M_1 : M_2 : M_3=(1.5 - 2) : 2 : 6, different to both mSUGRA and mirage mediation. Among the scalars, the squarks tend to be lighter and the sleptons heavier than for comparable mSUGRA models. We generate 10 fb^{-1} of sample LHC data for the random spectra in order to study the range of collider phenomenology that can occur. We perform a detailed mass reconstruction on one example large-volume string model spectrum. 100 fb^{-1} of integrated luminosity is sufficient to discriminate the model from mSUGRA and aspects of the sparticle spectrum can be accurately reconstructed.Comment: 42 pages, 21 figures. Added references and discussion for section 3. Slight changes in the tex

    Phylogenetic analyses of diverse <i>Podaxis</i> specimens from Southern Africa reveal hidden diversity and new insights into associations with termites

    Get PDF
    <p>Although frequently found on mounds of the grass-cutting termite genus . Trinervitermes, virtually nothing is known about the natural history of the fungal genus . Podaxis (Agaricaceae) nor why it associates with termite mounds. More than 40 species of this secotioid genus have been described since Linnaeus characterised the first species in 1771. However, taxonomic confusion arose when most of these species were reduced to synonymy with . Podaxis pistillaris in 1933. Although a few more species have since been described, the vast majority of specimens worldwide are still treated as . P. pistillaris. Using 45 fresh and herbarium specimens from Southern Africa, four from North America and one each from Ethiopia, and Kenya, we constructed the first comprehensive phylogeny of the genus. Four of the genotyped specimens were more than 100 y old. With the exception of the type specimen of . Podaxis rugospora, all herbarium specimens were labelled as . P. pistillaris or . Podaxis sp. However, our data shows that the genus contains at least five well-supported clades with significant inter-clade differences in spore length, width and wall thickness, and fruiting body length, supporting that clades likely represent distinct . Podaxis species. Certain clades consistently associate with termites while others appear entirely free-living.</p

    Draft genome of the fungus-growing termite pathogenic fungus <i>Ophiocordyceps bispora</i> (Ophiocordycipitaceae, Hypocreales, Ascomycota)

    Get PDF
    This article documents the public availability of genome sequence data and assembled contigs representing the partial draft genome of Ophiocordyceps bispora. As one of the few known pathogens of fungus-farming termites, a draft genome of O. bispora represents the opportunity to further the understanding of disease and resistance in these complex termite societies. With the ongoing attempts to resolve the taxonomy of the Hypocralaean family, more genetic data will also help to shed light on the phylogenetic relationship between sexual and asexual life stages. Next generation sequence data is available from the European Nucleotide Archive (ENA) under accession PRJEB13655; run numbers: ERR1368522, ERR1368523, and ERR1368524. Genome assembly available from ENA under accession numbers: FKNF01000001–FKNF01000302. Gene prediction available as protein fasta, nucleotide fasta and GFF file from Mendeley Data with accession doi:10.17632/r99fd6g3s4.2 (http://dx.doi.org/10.17632/r99fd6g3s4.2)

    Low-Energy Supersymmetry Breaking from String Flux Compactifications: Benchmark Scenarios

    Full text link
    Soft supersymmetry breaking terms were recently derived for type IIB string flux compactifications with all moduli stabilised. Depending on the choice of the discrete input parameters of the compactification such as fluxes and ranks of hidden gauge groups, the string scale was found to have any value between the TeV and GUT scales. We study the phenomenological implications of these compactifications at low energy. Three realistic scenarios can be identified depending on whether the Standard Model lies on D3 or D7 branes and on the value of the string scale. For the MSSM on D7 branes and the string scale between 10^12 GeV and 10^17 GeV we find that the LSP is a neutralino, while for lower scales it is the stop. At the GUT scale the results of the fluxed MSSM are reproduced, but now with all moduli stabilised. For the MSSM on D3 branes we identify two realistic scenarios. The first one corresponds to an intermediate string scale version of split supersymmetry. The second is a stringy mSUGRA scenario. This requires tuning of the flux parameters to obtain the GUT scale. Phenomenological constraints from dark matter, (g-2)_mu and BR(b->s gamma) are considered for the three scenarios. We provide benchmark points with the MSSM spectrum, making the models suitable for a detailed phenomenological analysis.Comment: 29 pages, 12 figures, reference adde

    Adaptations of Pseudoxylaria towards a comb-associated lifestyle in fungus-farming termite colonies

    Get PDF
    Characterizing ancient clades of fungal symbionts is necessary for understanding the evolutionary process underlying symbiosis development. In this study, we investigated a distinct subgeneric taxon of Xylaria (Xylariaceae), named Pseudoxylaria, whose members have solely been isolated from the fungus garden of farming termites. Pseudoxylaria are inconspicuously present in active fungus gardens of termite colonies and only emerge in the form of vegetative stromata, when the fungus comb is no longer attended ("sit and wait" strategy). Insights into the genomic and metabolic consequences of their association, however, have remained sparse. Capitalizing on viable Pseudoxylaria cultures from different termite colonies, we obtained genomes of seven and transcriptomes of two Pseudoxylaria isolates. Using a whole-genome-based comparison with free-living members of the genus Xylaria, we document that the association has been accompanied by significant reductions in genome size, protein-coding gene content, and reduced functional capacities related to oxidative lignin degradation, oxidative stress responses and secondary metabolite production. Functional studies based on growth assays and fungus-fungus co-cultivations, coupled with isotope fractionation analysis, showed that Pseudoxylaria only moderately antagonizes growth of the termite food fungus Termitomyces, and instead extracts nutrients from the food fungus biomass for its own growth. We also uncovered that Pseudoxylaria is still capable of producing structurally unique metabolites, which was exemplified by the isolation of two novel metabolites, and that the natural product repertoire correlated with antimicrobial and insect antifeedant activity

    Adaptations of Pseudoxylaria towards a comb-associated lifestyle in fungus-farming termite colonies

    Get PDF
    DATA AVAILABILITY: Supporting Information of this article is free of charge and contains list of accession numbers of sequences used for analysis, phylogenetic trees, cultivation studies including co-cultivation, analyses of genomic and metabolomic data, NMR and MS-data of isolated metabolites and data of insect feeding studies including statistical analyses.Characterizing ancient clades of fungal symbionts is necessary for understanding the evolutionary process underlying symbiosis development. In this study, we investigated a distinct subgeneric taxon of Xylaria (Xylariaceae), named Pseudoxylaria, whose members have solely been isolated from the fungus garden of farming termites. Pseudoxylaria are inconspicuously present in active fungus gardens of termite colonies and only emerge in the form of vegetative stromata, when the fungus comb is no longer attended (“sit and wait” strategy). Insights into the genomic and metabolic consequences of their association, however, have remained sparse. Capitalizing on viable Pseudoxylaria cultures from different termite colonies, we obtained genomes of seven and transcriptomes of two Pseudoxylaria isolates. Using a whole-genome-based comparison with free-living members of the genus Xylaria, we document that the association has been accompanied by significant reductions in genome size, protein-coding gene content, and reduced functional capacities related to oxidative lignin degradation, oxidative stress responses and secondary metabolite production. Functional studies based on growth assays and fungus-fungus co-cultivations, coupled with isotope fractionation analysis, showed that Pseudoxylaria only moderately antagonizes growth of the termite food fungus Termitomyces, and instead extracts nutrients from the food fungus biomass for its own growth. We also uncovered that Pseudoxylaria is still capable of producing structurally unique metabolites, which was exemplified by the isolation of two novel metabolites, and that the natural product repertoire correlated with antimicrobial and insect antifeedant activity.The German Research Foundation (DFG, Deutsche Forschungsgemeinschaft), the Germany´s Excellence Strategy, the European Research Council and The Danish Council for Independent Research. Open Access funding enabled and organized by Projekt DEAL.https://www.nature.com/ismejBiochemistryGeneticsMicrobiology and Plant Patholog

    Zermelo Navigation in the Quantum Brachistochrone

    Get PDF
    We analyse the optimal times for implementing unitary quantum gates in a constrained finite dimensional controlled quantum system. The family of constraints studied is that the permitted set of (time dependent) Hamiltonians is the unit ball of a norm induced by an inner product on su(n). We also consider a generalisation of this to arbitrary norms. We construct a Randers metric, by applying a theorem of Shen on Zermelo navigation, the geodesics of which are the time optimal trajectories compatible with the prescribed constraint. We determine all geodesics and the corresponding time optimal Hamiltonian for a specific constraint on the control i.e. k (Tr(Hc(t)^2) = 1 for any given value of k > 0. Some of the results of Carlini et. al. are re-derived using alternative methods. A first order system of differential equations for the optimal Hamiltonian is obtained and shown to be of the form of the Euler Poincare equations. We illustrate that this method can form a methodology for determining which physical substrates are effective at supporting the implementation of fast quantum computation

    Design and implementation of the international genetics and translational research in transplantation network

    Get PDF

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P &lt; 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
    corecore