429 research outputs found

    Survey of LTE Downlink Schedulers Algorithms in Open Access Simulation Tools NS-3 and LTE-SIM

    Full text link
    The LTE/LTE-A has become a catchphrase for research and lot of research are being conducted and carried out in LTE in various issues by various people. New tools are developed and introduced in the market to interpret the results of the new algorithms proposed by various people. Some tools are open access which are free to use but some tools are produced by the companies which are not open access. In this paper some of the open access simulation tools like LTE-Sim and NS-3 are analyzed and LTE downlink scheduler algorithms are simulated using those tools. In LTE systems, the downlink scheduler is an important component for radio resource management; hence in the context of LTE simulation, a study between the downlink scheduler models between the simulators are performed

    Vaccines against toxoplasma gondii : challenges and opportunities

    Get PDF
    Development of vaccines against Toxoplasma gondii infection in humans is of high priority, given the high burden of disease in some areas of the world like South America, and the lack of effective drugs with few adverse effects. Rodent models have been used in research on vaccines against T. gondii over the past decades. However, regardless of the vaccine construct, the vaccines have not been able to induce protective immunity when the organism is challenged with T. gondii, either directly or via a vector. Only a few live, attenuated T. gondii strains used for immunization have been able to confer protective immunity, which is measured by a lack of tissue cysts after challenge. Furthermore, challenge with low virulence strains, especially strains with genotype II, will probably be insufficient to provide protection against the more virulent T. gondii strains, such as those with genotypes I or II, or those genotypes from South America not belonging to genotype I, II or III. Future studies should use animal models besides rodents, and challenges should be performed with at least one genotype II T. gondii and one of the more virulent genotypes. Endpoints like maternal-foetal transmission and prevention of eye disease are important in addition to the traditional endpoint of survival or reduction in numbers of brain cysts after challenge

    Modulation of β-Catenin Signaling by Glucagon Receptor Activation

    Get PDF
    The glucagon receptor (GCGR) is a member of the class B G protein–coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA) pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin–mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R) and glucagon-like peptide 1 (GLP-1R) receptors. Since low-density-lipoprotein receptor–related protein 5 (Lrp5) is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter–mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1) or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations

    Parent-reported health care expenditures associated with autism spectrum disorders in Heilongjiang province, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to determine the health expenses incurred by families with children with autism spectrum disorder (ASD) and those expenses' relation to total household income and expenditures.</p> <p>Methods</p> <p>In this cross-sectional study, health care expenditure data were collected through face-to-face interviews. Expenses included annual costs for clinic visits, medication, behavioral therapy, transportation, and accommodations. Health care costs as a percentage of total household income and expenditures were also determined. The participants included 290 families with ASD children who were treated at the Children Development and Behavior Research Center, Harbin Medical University, China.</p> <p>Results</p> <p>Families with ASD children from urban and rural areas had higher per-capita household expenditures by 60.8% and 74.7%, respectively, compared with provincial statistics for 2007. Behavioral therapy accounted for the largest proportion of health expenses (54.3%) for ASD children. In 19.9% of urban and 38.2% of rural families, health care costs exceeded the total annual household income. Most families (89.3% of urban families; 88.1% of rural families) in that province reported higher health care expenditures than the provincial household average.</p> <p>Conclusion</p> <p>For families with ASD children, the economic burden of health care is substantially higher than the provincial average.</p

    Transcriptome Characterization by RNA-seq Unravels the Mechanisms of Butyrate-Induced Epigenomic Regulation in Bovine Cells

    Get PDF
    Short-chain fatty acids (SCFAs), especially butyrate, affect cell differentiation, proliferation, and motility. Butyrate also induces cell cycle arrest and apoptosis through its inhibition of histone deacetylases (HDACs). In addition, butyrate is a potent inducer of histone hyper-acetylation in cells. Therefore, this SCFA provides an excellent in vitro model for studying the epigenomic regulation of gene expression induced by histone acetylation. In this study, we analyzed the differential in vitro expression of genes induced by butyrate in bovine epithelial cells by using deep RNA-sequencing technology (RNA-seq). The number of sequences read, ranging from 57,303,693 to 78,933,744, were generated per sample. Approximately 11,408 genes were significantly impacted by butyrate, with a false discovery rate (FDR) <0.05. The predominant cellular processes affected by butyrate included cell morphological changes, cell cycle arrest, and apoptosis. Our results provided insight into the transcriptome alterations induced by butyrate, which will undoubtedly facilitate our understanding of the molecular mechanisms underlying butyrate-induced epigenomic regulation in bovine cells

    Regulation of membrane ruffling by polarized STIM1 and ORAI1in cortactin-rich domains

    Get PDF
    La movilidad celular y la migración requieren la reorganización del citoesqueleto cortical en el borde principal de las células y la entrada de Ca2 + extracelular es esencial para esta reorganización. Sin embargo, la naturaleza molecular de los reguladores de esta vía es desconocida. Este trabajo contribuye a comprender el papel de STIM1 y ORAI1 en la promoción de la ondulación de la membrana al mostrar que la fosfo-STIM1 se localiza en el borde principal de las células, y que tanto phospho-STIM1 como ORAI1 se localizan conjuntamente con la cortactina (CTTN), un regulador del citoesqueleto en las zonas de rizo de la membrana. Las líneas celulares STIM1-KO y ORAI1-KO se generaron mediante la edición del genoma CRISPR / Cas9 en células U2OS. En ambos casos, las células KO presentaron una reducción notable de la entrada de Ca2 + operada por el almacén (SOCE) que se rescató mediante la expresión de STIM1-mCherry y ORAI1-mCherry. Estos resultados demostraron que SOCE regula la deformación de la membrana en el borde anterior de las células. Por otra parte, ORAI1 endógeno y ORAI1-GFP sobreexpresado coinmuno precipitado con CTTN endógeno. Este último resultado, además del fenotipo de las células KO, la preservación de la co-localización de ORAI1-CTTN durante el fruncido, y la inhibición de la rizo de la membrana por parte del inhibidor del canal de Ca2 + SKF96365, apoya aún más un vínculo funcional entre el SOCE y el fruncido de la membrana.Cell motility and migration requires the reorganization of the cortical cytoskeleton at the leading edge of cells and extracellular Ca2+ entry is essential for this reorganization. However the molecular nature of the regulators of this pathway is unknown. This work contributes to understanding the role of STIM1 and ORAI1 in the promotion of membrane ruffling by showing that phospho-STIM1 localizes at the leading edge of cells, and that both phospho-STIM1 and ORAI1 co-localize with cortactin (CTTN), a regulator of the cytoskeleton at membrane ruffling areas. STIM1-KO and ORAI1-KO cell lines were generated by CRISPR/Cas9 genome editing in U2OS cells. In both cases, KO cells presented a notable reduction of store-operated Ca2+ entry (SOCE) that was rescued by expression of STIM1-mCherry and ORAI1-mCherry. These results demonstrated that SOCE regulates membrane ruffling at the leading edge of cells. Moreover, endogenous ORAI1 and overexpressed ORAI1-GFP co-immuno precipitated with endogenous CTTN. This latter result, in addition to the KO cells’ phenotype, the preservation of ORAI1-CTTN co-localization during ruffling, and the inhibition of membrane ruffling g by the Ca2+- channel inhibitor SKF96365, further supports a functional link between SOCE and membrane ruffling.• Ministerio de Economía y Competitividad y Fondo Social Europeo. Becas BFU2011-22798 y BFU2014-52401-P, para Francisco Javier Martín Romero • Consejo de Investigación Médica. Beca MC_UU_12016 / 2, para Darío R. Alessi • Ministerio de Economía y Competitividad. Beca BES-2012-052061, para Aida María López Guerrero • Gobierno de Extremadura. Ayuda PD10081, para Patricia Tomás Martín • Ministerio de Educación, Cultura y Deporte. Beca FPU13 / 03430, para Carlos Pascual Caro • Consejo de Investigación Médica. Ayuda MR / K015869 / 1, para Graeme Ball • EMBO. Beca ASTF-311-2014, para Eulalia Pozo Guisado • Ministerio de Educación, Cultura Española y Deporte. Beca PRX14 / 00176, para Francisco Javier Martín RomeropeerReviewe

    A-Kinase Anchoring in Dendritic Cells Is Required for Antigen Presentation

    Get PDF
    BACKGROUND: Dendritic cells (DC) are the most potent antigen presenting cells (APC) of the immune system. Prostaglandin E(2), cyclic AMP, and protein kinase A (PKA) have all been shown to regulate DC maturation and activity. In other cells, the ability of these molecules to convey their signals has been shown to be dependent on A-kinase anchoring proteins (AKAPs). Here we present evidence for the existence and functional importance of AKAPs in human DC. METHODOLOGY/PRINCIPAL FINDINGS: Using immunofluorescence and/or western analyses we identify AKAP79, AKAP149, AKAP95, AKAP LBC and Ezrin. We also demonstrate by western analysis that expression of AKAP79, AKAP149 and RII are upregulated with DC differentiation and maturation. We establish the functional importance of PKA anchoring in multiple aspects of DC biology using the anchoring inhibitor peptides Ht31 and AKAP-IS. Incubation of protein or peptide antigen loaded DC with Ht31 or AKAP-IS results in a 30-50% decrease in antigen presentation as measured by IFN-gamma production from antigen specific CD4(+) T cells. Incubation of LPS treated DC with Ht31 results in 80% inhibition of TNF-alpha and IL-10 production. Ht31 slightly decreases the expression of CD18 and CD11a and CD11b, slightly increases the basal expression of CD83, dramatically decreases the LPS stimulated expression of CD40, CD80 and CD83, and significantly increases the expression of the chemokine receptor CCR7. CONCLUSIONS: These experiments represent the first evidence for the functional importance of PKA anchoring in multiple aspects of DC biology

    Lysine-Specific Demethylase 1 (LSD1) Is Required for the Transcriptional Repression of the Telomerase Reverse Transcriptase (hTERT) Gene

    Get PDF
    BACKGROUND: Lysine-specific demethylase 1 (LSD1), catalysing demethylation of mono- and di-methylated histone H3-K4 or K9, exhibits diverse transcriptional activities by mediating chromatin reconfiguration. The telomerase reverse transcriptase (hTERT) gene, encoding an essential component for telomerase activity that is involved in cellular immortalization and transformation, is silent in most normal human cells while activated in up to 90% of human cancers. It remains to be defined how exactly the transcriptional activation of the hTERT gene occurs during the oncogenic process. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we determined the effect of LSD1 on hTERT transcription. In normal human fibroblasts with a tight hTERT repression, a pharmacological inhibition of LSD1 led to a weak hTERT expression, and a robust induction of hTERT mRNA was observed when LSD1 and histone deacetylases (HDACs) were both inhibited. Small interference RNA-mediated depletion of both LSD1 and CoREST, a co-repressor in HDAC-containing complexes, synergistically activated hTERT transcription. In cancer cells, inhibition of LSD1 activity or knocking-down of its expression led to significant increases in levels of hTERT mRNA and telomerase activity. Chromatin immunoprecipitation assay showed that LSD1 occupied the hTERT proximal promoter, and its depletion resulted in elevated di-methylation of histone H3-K4 accompanied by increased H3 acetylation locally in cancer cells. Moreover, during the differentiation of leukemic HL60 cells, the decreased hTERT expression was accompanied by the LSD1 recruitment to the hTERT promoter. CONCLUSIONS/SIGNIFICANCE: LSD1 represses hTERT transcription via demethylating H3-K4 in normal and cancerous cells, and together with HDACs, participates in the establishment of a stable repression state of the hTERT gene in normal or differentiated malignant cells. The findings contribute to better understandings of hTERT/telomerase regulation, which may be implicated in the development of therapeutic strategies for telomerase dysregulation-associated human diseases including cancers

    Gut microbiota trajectory in early life may predict development of celiac disease.

    Get PDF
    BACKGROUND: To investigate whether alterations in the developing intestinal microbiota and immune markers precede celiac disease (CD) onset in infants at familial risk of developing the disease. METHODS: A nested case-control study was carried out as part of a larger prospective cohort study, which included healthy full-term newborns (> 200) with at least one first relative with biopsy-verified CD. The present study includes cases of CD (n = 10) and the best-matched controls (n = 10) who did not develop the disease after 5-year follow-up. Fecal microbiota, assessed by high-throughput 16S rRNA gene amplicon sequencing, and immune parameters were profiled at 4 and 6 months of age and related to CD onset. RESULTS: The microbiota of infants who remained healthy showed an increase in bacterial diversity over time, characterized by increases in Firmicutes families, but not those who developed CD. Infants who subsequently developed CD showed a significant reduction in sIgA levels over time, while those who remained healthy showed increases in TNF-α correlated to Bifidobacterium spp. An increased relative abundance of Bifidobacterium longum was associated with control children while increased proportions of Bifidobacterium breve and Enterococcus spp. were associated with CD development. CONCLUSION: The findings suggest that alterations in the early trajectory of gut microbiota in infants at CD risk could influence the immune maturation process and predispose to CD, although larger population studies are warranted to confirm this hypothesis
    corecore