31 research outputs found

    Remodeling of the actin network associated with the non-structural protein 1 (NS1) of West Nile virus and formation of NS1-containing tunneling nanotubes

    Get PDF
    The cellular response to the recombinant NS1 protein of West Nile virus (NS1WNV) was studied using three different cell types: Vero E6 simian epithelial cells, SH-SY5Y human neuroblastoma cells, and U-87MG human astrocytoma cells. Cells were exposed to two different forms of NS1WNV: (i) the exogenous secreted form, sNS1WNV, added to the extracellular milieu; and (ii) the endogenous NS1WNV, the intracellular form expressed in plasmid-transfected cells. The cell attachment and uptake of sNS1WNV varied with the cell type and were only detectable in Vero E6 and SH-SY5Y cells. Addition of sNS1WNV to the cell culture medium resulted in significant remodeling of the actin filament network in Vero E6 cells. This effect was not observed in SH-SY5Y and U-87MG cells, implying that the cellular uptake of sNS1WNV and actin network remodeling were dependent on cell type. In the three cell types, NS1WNV-expressing cells formed filamentous projections reminiscent of tunneling nanotubes (TNTs). These TNT-like projections were found to contain actin and NS1WNV proteins. Interestingly, similar actin-rich, TNT-like filaments containing NS1WNV and the viral envelope glycoprotein EWNV were also observed in WNV-infected Vero E6 cells

    Development of a reverse genetics system for Toscana virus (lineage A)

    Get PDF
    Toscana virus (TOSV) is a Phlebovirus in the Phenuiviridae family, order Bunyavirales, found in the countries surrounding the Mediterranean. TOSV is an important cause of seasonal acute meningitis and encephalitis within its range. Here, we determined the full sequence of the TOSV strain 1500590, a lineage A virus obtained from an infected patient (Marseille, 2007) and used this in combination with other sequence information to construct functional cDNA plasmids encoding the viral L, M, and S antigenomic sequences under the control of the T7 RNA promoter to recover recombinant viruses. Importantly, resequencing identified two single nucleotide changes to a TOSV reference genome, which, when corrected, restored functionality to the polymerase L and made it possible to recover infectious recombinant TOSV (rTOSV) from cDNA, as well as establish a minigenome system. Using reverse genetics, we produced an NSs-deletant rTOSV and also obtained viruses expressing reporter genes instead of NSs. The availability of such a system assists investigating questions that require genetic manipulation of the viral genome, such as investigations into replication and tropism, and beyond these fundamental aspects, also the development of novel vaccine design strategies

    Rôle des protéines IFITMs (Interferon Induced Transmembrane Proteins) dans la réponse antivirale innée contre le virus de la fièvre de la vallée du Rift

    No full text
    Au vu de l’émergence croissante des virus transmis par les arthropodes, il est devenu nécessaire de mieux comprendre les interactions hôte-virus, notamment la réponse antivirale. Le virus de la fièvre de la vallée du Rift (RVFV) est un virus zoonotique transmis par des arthropodes, responsable de maladies pouvant être sévères chez les ruminants et chez l’Homme, il représente une menace croissante pour la santé publique et vétérinaire. L’immunité innée viro-induite et la synthèse de facteurs de restriction sont une des premières lignes de défense contre les infections virales chez les mammifères. Parmi ces facteurs, les protéines IFITMs « Interferon Induced transmembrane proteins » codées par trois gènes (IFITM-1, -2 et -3) sont capables d’inhiber la réplication de nombreux virus pathogènes de divers familles et genres. Les IFITMs bloquent les virus à deux étapes de leur cycle. Précocement, en empêchant la fusion des membranes virales et cellulaires lors de l’entrée des virus dans la cellule puis plus tardivement, comme cela a été montré pour le Virus de l’Immunodéficience Humaine, en diminuant l’infectiosité des particules virales nouvellement produites. Mon projet a eu pour but de caractériser les interactions entre le RVFV et les IFITMs de différentes espèces. Une précédente étude a montré que le RVFV était sensible à la restriction précoce induite par les IFITM-2 et 3 humains (H2 et H3) et j’ai pu montrer que, contrairement à beaucoup d’autres virus, le RVFV (souche atténuée MP12) est résistant à la restriction tardive induite par ces IFITMs humains. D’autre part, mes résultats indiquent que les IFITMs d’autres espèces naturellement infectées par le RVFV (de bovidé et camélidé) sont capables de bloquer fortement le RVFV et en particulier les protéines IFITM-2 et -3 localisées dans les compartiments intracellulaires endosomaux. Enfin, nos données suggèrent que contrairement au RVFV, le virus Toscana appartenant au même genre (phlébovirus) est extrêmement résistant aux IFITMs humains et bovins. Ce travail illustre la complexité des interactions entre le RVFV et les IFITMs et suggère une grande hétérogénéité dans la susceptibilité ou résistance des phlébovirus aux IFITMs selon le virus, la souche virale, l’étape du cycle et les espèces considérées

    A crystal structure of the catalytic core domain of an avian sarcoma and leukemia virus integrase suggests an alternate dimeric assembly

    No full text
    Integrase (IN) is an important therapeutic target in the search for anti-Human Immunodeficiency Virus (HIV) inhibitors. This enzyme is composed of three domains and is hard to crystallize in its full form. First structural results on IN were obtained on the catalytic core domain (CCD) of the avian Rous and Sarcoma Virus strain Schmidt-Ruppin A (RSV-A) and on the CCD of HIV-1 IN. A ribonuclease-H like motif was revealed as well as a dimeric interface stabilized by two pairs of alpha-helices (alpha1/alpha5, alpha5/alpha1). These structural features have been validated in other structures of IN CCDs. We have determined the crystal structure of the Rous-associated virus type-1 (RAV-1) IN CCD to 1.8 A resolution. RAV-1 IN shows a standard activity for integration and its CCD differs in sequence from that of RSV-A by a single accessible residue in position 182 (substitution A182T). Surprisingly, the CCD of RAV-1 IN associates itself with an unexpected dimeric interface characterized by three pairs of alpha-helices (alpha3/alpha5, alpha1/alpha1, alpha5/alpha3). A182 is not involved in this novel interface, which results from a rigid body rearrangement of the protein at its alpha1, alpha3, alpha5 surface. A new basic groove that is suitable for single-stranded nucleic acid binding is observed at the surface of the dimer. We have subsequently determined the structure of the mutant A182T of RAV-1 IN CCD and obtained a RSV-A IN CCD-like structure with two pairs of buried alpha-helices at the interface. Our results suggest that the CCD of avian INs can dimerize in more than one state. Such flexibility can further explain the multifunctionality of retroviral INs, which beside integration of dsDNA are implicated in different steps of the retroviral cycle in presence of viral ssRNA

    A crystal structure of the catalytic core domain of an avian sarcoma and leukemia virus integrase suggests an alternate dimeric assembly.

    Get PDF
    Integrase (IN) is an important therapeutic target in the search for anti-Human Immunodeficiency Virus (HIV) inhibitors. This enzyme is composed of three domains and is hard to crystallize in its full form. First structural results on IN were obtained on the catalytic core domain (CCD) of the avian Rous and Sarcoma Virus strain Schmidt-Ruppin A (RSV-A) and on the CCD of HIV-1 IN. A ribonuclease-H like motif was revealed as well as a dimeric interface stabilized by two pairs of α-helices (α1/α5, α5/α1). These structural features have been validated in other structures of IN CCDs. We have determined the crystal structure of the Rous-associated virus type-1 (RAV-1) IN CCD to 1.8 Å resolution. RAV-1 IN shows a standard activity for integration and its CCD differs in sequence from that of RSV-A by a single accessible residue in position 182 (substitution A182T). Surprisingly, the CCD of RAV-1 IN associates itself with an unexpected dimeric interface characterized by three pairs of α-helices (α3/α5, α1/α1, α5/α3). A182 is not involved in this novel interface, which results from a rigid body rearrangement of the protein at its α1, α3, α5 surface. A new basic groove that is suitable for single-stranded nucleic acid binding is observed at the surface of the dimer. We have subsequently determined the structure of the mutant A182T of RAV-1 IN CCD and obtained a RSV-A IN CCD-like structure with two pairs of buried α-helices at the interface. Our results suggest that the CCD of avian INs can dimerize in more than one state. Such flexibility can further explain the multifunctionality of retroviral INs, which beside integration of dsDNA are implicated in different steps of the retroviral cycle in presence of viral ssRNA

    IFITMs from Naturally Infected Animal Species Exhibit Distinct Restriction Capacities against Toscana and Rift Valley Fever Viruses

    No full text
    International audienceRift Valley Fever virus (RVFV) and Toscana virus (TOSV) are two pathogenic arthropod-borne viruses responsible for zoonotic infections in both humans and animals; as such, they represent a growing threat to public and veterinary health. Interferon-induced transmembrane (IFITM) proteins are broad inhibitors of a large panel of viruses belonging to various families and genera. However, little is known on the interplay between RVFV, TOSV, and the IFITM proteins derived from their naturally infected host species. In this study, we investigated the ability of human, bovine, and camel IFITMs to restrict RVFV and TOSV infection. Our results indicated that TOSV was extremely sensitive to inhibition by all the animal IFITMs tested, while RVFV was inhibited by human IFITM-2 and IFITM-3, but not IFITM-1, and exhibited a more heterogeneous resistance phenotype towards the individual bovine and camel IFITMs tested. Overall, our findings shed some light on the complex and differential interplay between two zoonotic viruses and IFITMs from their naturally infected animal species

    Transfer of the Cystic Fibrosis Transmembrane Conductance Regulator to Human Cystic Fibrosis Cells Mediated by Extracellular Vesicles

    No full text
    Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in a deficiency in chloride channel activity. In this study, extracellular vesicles (EVs), microvesicles, and exosomes were used as vehicles to deliver exogenous CFTR glycoprotein and its encoding mRNA (mRNA(GFP-CFTR)) to CF cells to correct the CFTR chloride channel function. We isolated microvesicles and exosomes from the culture medium of CFTR-positive Calu-3 cells, or from A549 cells transduced with an adenoviral vector overexpressing a GFP-tagged CFTR (GFP-CFTR). Both microvesicles and exosomes had the capacity to package and deliver the GFP-CFTR glycoprotein and mRNA(GFP-CFTR) to target cells in a dose-dependent manner. Homologous versus heterologous EV-to-cell transfer was studied, and it appeared that the cellular uptake of EVs was significantly more efficient in homologous transfer. The incubation of CF15 cells, a nasal epithelial cell line homozygous for the ΔF508 CFTR mutation, with microvesicles or exosomes loaded with GFP-CFTR resulted in the correction of the CFTR function in CF cells in a dose-dependent manner. A time-course analysis of EV-transduced CF cells suggested that CFTR transferred as mature glycoprotein was responsible for the CFTR-associated channel activity detected at early times posttransduction, whereas GFP-CFTR translated from exogenous mRNA(GFP-CFTR) was responsible for the CFTR function at later times. Collectively, this study showed the potential application of microvesicles and exosomes as vectors for CFTR transfer and functional correction of the genetic defect in human CF cells

    Porcine endogenous retrovirus-A/C: biochemical properties of its integrase and susceptibility to raltegravir

    No full text
    Porcine endogenous retroviruses (PERVs) are present in the genomes of pig cells. The PERV-A/C recombinant virus can infect human cells and is a major risk of zoonotic disease in the case of xenotransplantation of pig organs to humans. Raltegravir (RAL) is a viral integrase (IN) inhibitor used in highly active antiretroviral treatment. In the present study, we explored the potential use of RAL against PERV-A/C. We report (i) a three-dimensional model of the PERV-A/C intasome complexed with RAL, (ii) the sensitivity of PERV-A/C IN to RAL in vitro and (iii) the sensitivity of a PERV-A/C-IRES-GFP recombinant virus to RAL in cellulo. We demonstrated that RAL is a potent inhibitor against PERV-A/C IN and PERV-A/C replication with IC50s in the nanomolar range. To date, the use of retroviral inhibitors remains the only way to control the risk of zoonotic PERV infection during pig-to-human xenotransplantation

    Intranasal Exposure to Rift Valley Fever Virus Live-Attenuated Strains Leads to High Mortality Rate in Immunocompetent Mice

    Get PDF
    International audienceRift Valley fever virus (RVFV) is a pathogenic arthropod-borne virus that can cause serious illness in both ruminants and humans. The virus can be transmitted by an arthropod bite or contact with contaminated fluids or tissues. Two live-attenuated veterinary vaccines—the Smithburn (SB) and Clone 13 (Cl.13)—are currently used during epizootic events in Africa. However, their residual pathogenicity (i.e., SB) or potential of reversion (i.e., Cl.13) causes important adverse effects, strongly limiting their use in the field. In this study, we infected immunocompetent mice with SB or Cl.13 by a subcutaneous or an intranasal inoculation. Interestingly, we found that, unlike the subcutaneous infection, the intranasal inoculation led to a high mortality rate. In addition, we detected high titers and viral N antigen levels in the brain of both the SB- and Cl.13-infected mice. Overall, we unveil a clear correlation between the pathogenicity and the route of administration of both SB and Cl.13, with the intranasal inoculation leading to a stronger neurovirulence and higher mortality rate than the subcutaneous infection
    corecore