31 research outputs found

    Genetic counselling and testing in pulmonary arterial hypertension:a consensus statement on behalf of the International Consortium for Genetic Studies in PAH

    Get PDF
    Pulmonary arterial hypertension (PAH) is a rare disease that can be caused by (likely) pathogenic germline genomic variants. In addition to the most prevalent disease gene, BMPR2 (bone morphogenetic protein receptor 2), several genes, some belonging to distinct functional classes, are also now known to predispose to the development of PAH. As a consequence, specialist and non-specialist clinicians and healthcare professionals are increasingly faced with a range of questions regarding the need for, approaches to and benefits/risks of genetic testing for PAH patients and/or related family members. We provide a consensus-based approach to recommendations for genetic counselling and assessment of current best practice for disease gene testing. We provide a framework and the type of information to be provided to patients and relatives through the process of genetic counselling, and describe the presently known disease causal genes to be analysed. Benefits of including molecular genetic testing within the management protocol of patients with PAH include the identification of individuals misclassified by other diagnostic approaches, the optimisation of phenotypic characterisation for aggregation of outcome data, including in clinical trials, and importantly through cascade screening, the detection of healthy causal variant carriers, to whom regular assessment should be offered.</p

    Identification of rare sequence variation underlying heritable pulmonary arterial hypertension.

    Get PDF
    Pulmonary arterial hypertension (PAH) is a rare disorder with a poor prognosis. Deleterious variation within components of the transforming growth factor-β pathway, particularly the bone morphogenetic protein type 2 receptor (BMPR2), underlies most heritable forms of PAH. To identify the missing heritability we perform whole-genome sequencing in 1038 PAH index cases and 6385 PAH-negative control subjects. Case-control analyses reveal significant overrepresentation of rare variants in ATP13A3, AQP1 and SOX17, and provide independent validation of a critical role for GDF2 in PAH. We demonstrate familial segregation of mutations in SOX17 and AQP1 with PAH. Mutations in GDF2, encoding a BMPR2 ligand, lead to reduced secretion from transfected cells. In addition, we identify pathogenic mutations in the majority of previously reported PAH genes, and provide evidence for further putative genes. Taken together these findings contribute new insights into the molecular basis of PAH and indicate unexplored pathways for therapeutic intervention

    NBEAL2 is required for neutrophil and NK cell function and pathogen defense.

    Get PDF
    Mutations in the human NBEAL2 gene cause gray platelet syndrome (GPS), a bleeding diathesis characterized by a lack of α granules in platelets. The functions of the NBEAL2 protein have not been explored outside platelet biology, but there are reports of increased frequency of infection and abnormal neutrophil morphology in patients with GPS. We therefore investigated the role of NBEAL2 in immunity by analyzing the phenotype of Nbeal2-deficient mice. We found profound abnormalities in the Nbeal2-deficient immune system, particularly in the function of neutrophils and NK cells. Phenotyping of Nbeal2-deficient neutrophils showed a severe reduction in granule contents across all granule subsets. Despite this, Nbeal2-deficient neutrophils had an enhanced phagocyte respiratory burst relative to Nbeal2-expressing neutrophils. This respiratory burst was associated with increased expression of cytosolic components of the NADPH oxidase complex. Nbeal2-deficient NK cells were also dysfunctional and showed reduced degranulation. These abnormalities were associated with increased susceptibility to both bacterial (Staphylococcus aureus) and viral (murine CMV) infection in vivo. These results define an essential role for NBEAL2 in mammalian immunity

    Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity

    Get PDF
    The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91phox\textit{phox} and p22phox\textit{phox} subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643\textit{bc017643}, and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91phox\textit{phox} and p22phox\textit{phox}. Consequently, Eros\textit{Eros}-deficient mice quickly succumb to infection. Eros\textit{Eros} also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros\textit{Eros} is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense.D.C. Thomas was funded by a Wellcome Trust/CIMR Next Generation Fellowship, a National Institute for Health Research (NIHR) Clinical Lectureship, and a Starter Grant for Clinical Lecturers (Academy of Medical Sciences). K.G.C. Smith was funded by funded by the Medical Research Council (program grant MR/L019027) and is a Wellcome Investigator and a NIHR Senior Investigator. S. Clare and G. Dougan were funded by the Wellcome Trust (grant 098051). The Cambridge Institute for Medical Research is in receipt of a Wellcome Trust Strategic Award (079895). J.C.L is funded by a Wellcome Intermediate Clinical Fellowship 105920/2/14/2

    Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood

    Get PDF
    Idiopathic pulmonary arterial hypertension (IPAH) is a rare but fatal disease diagnosed by right heart catheterisation and the exclusion of other forms of pulmonary arterial hypertension, producing a heterogeneous population with varied treatment response. Here we show unsupervised machine learning identification of three major patient subgroups that account for 92% of the cohort, each with unique whole blood transcriptomic and clinical feature signatures. These subgroups are associated with poor, moderate, and good prognosis. The poor prognosis subgroup is associated with upregulation of the ALAS2 and downregulation of several immunoglobulin genes, while the good prognosis subgroup is defined by upregulation of the bone morphogenetic protein signalling regulator NOG, and the C/C variant of HLA-DPA1/DPB1 (independently associated with survival). These findings independently validated provide evidence for the existence of 3 major subgroups (endophenotypes) within the IPAH classification, could improve risk stratification and provide molecular insights into the pathogenesis of IPAH

    GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements

    Get PDF
    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5–2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility

    Diagnostic and prognostic significance of cardiovascular magnetic resonance native myocardial T1 mapping in patients with pulmonary hypertension

    Get PDF
    Abstract Background Native T1 may be a sensitive, contrast-free, non-invasive cardiovascular magnetic resonance (CMR) marker of myocardial tissue changes in patients with pulmonary artery hypertension. However, the diagnostic and prognostic value of native T1 mapping in this patient group has not been fully explored. The aim of this work was to determine whether elevation of native T1 in myocardial tissue in pulmonary hypertension: (a) varies according to pulmonary hypertension subtype; (b) has prognostic value and (c) is associated with ventricular function and interaction. Methods Data were retrospectively collected from a total of 490 consecutive patients during their clinical 1.5 T CMR assessment at a pulmonary hypertension referral centre in 2015. Three hundred sixty-nine patients had pulmonary hypertension [58 ± 15 years; 66% female], an additional 39 had pulmonary hypertension due to left heart disease [68 ± 13 years; 60% female], 82 patients did not have pulmonary hypertension [55 ± 18; 68% female]. Twenty five healthy subjects were also recruited [58 ±4 years); 51% female]. T1 mapping was performed with a MOdified Look-Locker Inversion Recovery (MOLLI) sequence. T1 prognostic value in patients with pulmonary arterial hypertension was assessed using multivariate Cox proportional hazards regression analysis. Results Patients with pulmonary artery hypertension had elevated T1 in the right ventricular (RV) insertion point (pulmonary hypertension patients: T1 = 1060 ± 90 ms; No pulmonary hypertension patients: T1 = 1020 ± 80 ms p < 0.001; healthy subjects T1 = 940 ± 50 ms p < 0.001) with no significant difference between the major pulmonary hypertension subtypes. The RV insertion point was the most successful T1 region for discriminating patients with pulmonary hypertension from healthy subjects (area under the curve = 0.863) however it could not accurately discriminate between patients with and without pulmonary hypertension (area under the curve = 0.654). T1 metrics did not contribute to prediction of overall mortality (septal: p = 0.552; RV insertion point: p = 0.688; left ventricular free wall: p = 0.258). Systolic interventricular septal angle was a significant predictor of T1 in patients with pulmonary hypertension (p < 0.001). Conclusions Elevated myocardial native T1 was found to a similar extent in pulmonary hypertension patient subgroups and is independently associated with increased interventricular septal angle. Native T1 mapping may not be of additive value in the diagnostic or prognostic evaluation of patients with pulmonary artery hypertension
    corecore