127 research outputs found

    Seed‐to‐Seedling Transitions Exhibit Distance‐Dependent Mortality but No Strong Spacing Effects in a Neotropical Forest

    Get PDF
    Patterns of seed dispersal and seed mortality influence the spatial structure of plant communities and the local coexistence of competing species. Most seeds are dispersed in proximity to the parent tree, where mortality is also expected to be the highest, because of competition with siblings or the attraction of natural enemies. Whereas distance‐dependent mortality in the seed‐to‐seedling transition was often observed in tropical forests, few studies have attempted to estimate the shape of the survival‐distance curves, which determines whether the peak of seedling establishment occurs away from the parent tree (Janzen–Connell pattern) or if the peak attenuates but remains at the parent location (Hubbell pattern). In this study, we inferred the probability density of seed dispersal and two stages of seedling establishment (new recruits, and seedlings 20 cm or taller) with distance for 24 tree species present in the 50‐ha Forest Dynamics Plot of Barro Colorado Island, Panama. Using data from seed traps, seedling survey quadrats, and tree‐census records spanning the 1988–2014 period, we fit hierarchical Bayesian models including parameters for tree fecundity, the shape of the dispersal kernel, and overdispersion of seed or seedling counts. We combined predictions from multiple dispersal kernels to obtain more robust inferences. We find that Hubbell patterns are the most common and Janzen–Connell patterns are very rare among those species; that distance‐dependent mortality may be stronger in the seed stage, in the early recruit stage, or comparable in both; and that species with larger seeds experience less overall mortality and less distance‐dependent mortality. Finally, we describe how this modeling approach could be extended at a community scale to include less abundant species

    Counting niches: Abundance- by- trait patterns reveal niche partitioning in a Neotropical forest

    Full text link
    Tropical forests challenge us to understand biodiversity, as numerous seemingly similar species persist on only a handful of shared resources. Recent ecological theory posits that biodiversity is sustained by a combination of species differences reducing interspecific competition and species similarities increasing time to competitive exclusion. Together, these mechanisms counterintuitively predict that competing species should cluster by traits, in contrast with traditional expectations of trait overdispersion. Here, we show for the first time that trees in a tropical forest exhibit a clustering pattern. In a 50- ha plot on Barro Colorado Island in Panama, species abundances exhibit clusters in two traits connected to light capture strategy, suggesting that competition for light structures community composition. Notably, we find four clusters by maximum height, quantitatively supporting the classical grouping of Neotropical woody plants into shrubs, understory, midstory, and canopy layers.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155460/1/ecy3019.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155460/2/ecy3019-sup-0001-AppendixS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155460/3/ecy3019_am.pd

    Functional Traits of Tropical Trees and Lianas Explain Spatial Structure across Multiple Scales

    Get PDF
    Dispersal and density dependence are major determinants of spatial structure, population dynamics and coexistence for tropical forest plants. However, because these two processes can jointly influence spatial structure at similar scales, analysing spatial patterns to separate and quantify them is often difficult. Species functional traits can be useful indicators of dispersal and density dependence. However, few methods exist for linking functional traits to quantitative estimates of these processes that can be compared across multiple species. We analysed static spatial patterns of woody plant populations in the 50 ha Forest Dynamics Plot on Barro Colorado Island, Panama with methods that distinguished scale‐specific differences in species aggregation. We then tested how these differences related to seven functional traits: growth form, dispersal syndrome, tree canopy layer, adult stature, seed mass, wood density and shade tolerance. Next, we fit analytically tractable spatial moment models to the observed spatial structure of species characterized by similar trait values, which allowed us to estimate relationships of functional traits with the spatial scale of dispersal, and the spatial scale and intensity of negative density dependence. Our results confirm that lianas are more aggregated than trees, and exhibit increased aggregation within canopy gaps. For trees, increased seed mass, wood density and shade tolerance were associated with less intense negative density dependence, while higher canopy layers and increased stature were associated with decreased aggregation and better dispersal. Spatial structure for trees was also strongly determined by dispersal syndrome. Averaged across all spatial scales, zoochory was more effective than wind dispersal, which was more effective than explosive dispersal. However, at intermediate scales, zoochory was associated with more aggregation than wind dispersal, potentially because of differences in short‐distance dispersal and the intensity of negative density dependence. Synthesis. We develop new tools for identifying significant associations between functional traits and spatial structure, and for linking these associations to quantitative estimates of dispersal scale and the strength and scale of density dependence. Our results help clarify how these processes influence woody plant species on Barro Colorado, and demonstrate how these tools can be applied to other sites and systems

    Growth Strategies of Tropical Tree Species: Disentangling Light and Size Effects

    Get PDF
    An understanding of the drivers of tree growth at the species level is required to predict likely changes of carbon stocks and biodiversity when environmental conditions change. Especially in species-rich tropical forests, it is largely unknown how species differ in their response of growth to resource availability and individual size. We use a hierarchical Bayesian approach to quantify the impact of light availability and tree diameter on growth of 274 woody species in a 50-ha long-term forest census plot in Barro Colorado Island, Panama. Light reaching each individual tree was estimated from yearly vertical censuses of canopy density. The hierarchical Bayesian approach allowed accounting for different sources of error, such as negative growth observations, and including rare species correctly weighted by their abundance. All species grew faster at higher light. Exponents of a power function relating growth to light were mostly between 0 and 1. This indicates that nearly all species exhibit a decelerating increase of growth with light. In contrast, estimated growth rates at standardized conditions (5 cm dbh, 5% light) varied over a 9-fold range and reflect strong growth-strategy differentiation between the species. As a consequence, growth rankings of the species at low (2%) and high light (20%) were highly correlated. Rare species tended to grow faster and showed a greater sensitivity to light than abundant species. Overall, tree size was less important for growth than light and about half the species were predicted to grow faster in diameter when bigger or smaller, respectively. Together light availability and tree diameter only explained on average 12% of the variation in growth rates. Thus, other factors such as soil characteristics, herbivory, or pathogens may contribute considerably to shaping tree growth in the tropics

    Nonrandom processes maintain diversity in tropical forests

    Get PDF
    An ecological community\u27s species diversity tends to erode through time as a result of stochastic extinction, competitive exclusion, and unstable host-enemy dynamics. This erosion of diversity can be prevented over the short term if recruits are highly diverse as a result of preferential recruitment of rare species or, alternatively, if rare species survive preferentially, which increases diversity as the ages of the individuals increase. Here, we present census data from seven New and Old World tropical forest dynamics plots that all show the latter pattern. Within local areas, the trees that survived were as a group more diverse than those that were recruited or those that died. The larger (and therefore on average older) survivors were more diverse within local areas than the smaller survivors. When species were rare in a local area, they had a higher survival rate than when they were common, resulting in enrichment for rare species and increasing diversity with age and size class in these complex ecosystems
    corecore