10,970 research outputs found

    The spherical collapse model with shell crossing

    Get PDF
    In this work, we study the formation and evolution of dark matter halos by means of the spherical infall model with shell-crossing. We present a framework to tackle this effect properly based on the numerical follow-up, with time, of that individual shell of matter that contains always the same fraction of mass with respect to the total mass. In this first step, we do not include angular momentum, velocity dispersion or triaxiality. Within this framework - named as the Spherical Shell Tracker (SST) - we investigate the dependence of the evolution of the halo with virial mass, with the adopted mass fraction of the shell, and for different cosmologies. We find that our results are very sensitive to a variation of the halo virial mass or the mass fraction of the shell that we consider. However, we obtain a negligible dependence on cosmology. Furthermore, we show that the effect of shell-crossing plays a crucial role in the way that the halo reaches the stabilization in radius and the virial equilibrium. We find that the values currently adopted in the literature for the actual density contrast at the moment of virialization, delta_vir, may not be accurate enough. In this context, we stress the problems related to the definition of a virial mass and a virial radius for the halo. The question of whether the results found here may be obtained by tracking the shells with an analytic approximation remains to be explored.Comment: 15 pages, 4 figures, 9 tables, replaced to match the published MNRAS versio

    The thickness of a liquid layer on the free surface of ice as obtained from computer simulation

    Full text link
    Molecular dynamic simulations were performed for ice Ih with a free surface by using four water models, SPC/E, TIP4P, TIP4P/Ice and TIP4P/2005. The behavior of the basal plane, the primary prismatic plane and of the secondary prismatic plane when exposed to vacuum was analyzed. We observe the formation of a thin liquid layer at the ice surface at temperatures below the melting point for all models and the three planes considered. For a given plane it was found that the thickness of a liquid layer was similar for different water models, when the comparison is made at the same undercooling with respect to the melting point of the model. The liquid layer thickness is found to increase with temperature. For a fixed temperature it was found that the thickness of the liquid layer decreases in the following order: the basal plane, the primary prismatic plane, and the secondary prismatic plane. For the TIP4P/Ice model, a model reproducing the experimental value of the melting temperature of ice, the first clear indication of the formation of a liquid layer appears at about -100 Celsius for the basal plane, at about -80 Celsius for the primary prismatic plane and at about -70 Celsius for the secondary prismatic plane.Comment: 41 pages and 13 figure

    COMPARISON OF DIFFERENT METHODS FOR GENERATION AND ABSORPTION OF WATER WAVES

    Get PDF
    The knowledge of water wave characteristics (generation, propagation, transformation and breaking) is fundamental for hydrodynamic studies and the design of ocean, coastal and port structures. In addition to the small-scale experimental studies, the use of numerical models is also a very important tool in hydrodynamic studies. To have reliable numerical results a proper validation is required. The main objective of this paper is to compare different methods of wave generation and wave absorption in a numerical flume, and to find what is the most suited to simulate non-breaking regular wave propagation in a two-dimensional flume in deep water condition. The numerical simulations were made using the OpenFOAMÂź software package. Two solvers, waves2Foam and IHFoam/OlaFlow, the utility GroovyBC and a mesh stretching technique are compared. These numerical codes solve the transient Navier-Stokes equations and use a VoF (Volume of Fluid) method to identify the free surface. A solution dependence study with the methods of wave generation and wave absorption is presented. The results are also compared with the theoretical wave and experimental data. The results show that the different methods of generation produce waves similar to the theoretical and the experimental ones, only slightly differences were visible. The three method of wave dissipation considered produce very different results: IHFoam/OlaFlow is not able to dissipate the wave tested; the mesh stretching technique is able to dissipate the waves but produces a water level rise; the waves2Foam solver is able to dissipate properly the wave tested

    CVD of CrO2 Thin Films: Influence of the Deposition Parameters on their Structural and Magnetic Properties

    Get PDF
    This work reports on the synthesis of CrO2 thin films by atmospheric pressure CVD using chromium trioxide (CrO3) and oxygen. Highly oriented (100) CrO2 films containing highly oriented (0001) Cr2O3 were grown onto Al2O3(0001) substrates. Films display a sharp magnetic transition at 375 K and a saturation magnetization of 1.92 Bohr magnetons per f.u., close to the bulk value of 2 Bohr magnetons per f.u. for the CrO2. Keywords: Chromium dioxide (CrO2), Atmospheric pressure CVD, Spintronics.Comment: 5 pages, 6 figure

    A Novel Variant of DeSanto-Shinawi Syndrome with Joint Manifestations

    Get PDF
    variable degrees of developmental delay and intellectual disability that were recently delineated as DeSanto- Shinawi syndrome (OMIM 616708). We describe a patient with DeSanto-Shinawi syndrome caused by a novel frameshift variant in WAC gene (NM_016628.4(WAC):c.1689del (p.Phe563Leufs*6)). As noted in cases previously reported, our patient phenotype included facial dysmorphism, intellectual disability, behavioral problems, feeding difficulties, hirsutism, constipation and astigmatism. She also had limited range of motion of joints since birth and Juvenile Idiopathic Arthritis diagnosed at eleven years old. Although in the last years some additional features were reported in DeSanto-Shinawi syndrome, joint manifestations have not been previously described. As limited range of motion of joints was reported since birth with no correlation with arthritis onset, it could be a new clinical feature. Polyarthritis in this patient can be only a coincidence, since there is a first degree relative with psoriasis, or might be related to WAC mutation. Indeed, WAC encodes a protein that plays a vital role in autophagy. It has already been demonstrated that WAC haploinsufficiency leads to increased autophagy and, according to different authors, increased autophagy may display a pathogenic role in several autoimmune disorders such as Rheumatoid Arthritis and Juvenile Idiopathic Arthritis. Thus, WAC haploinsufficiency may have contributed to autoimmune disorder in this patient.info:eu-repo/semantics/publishedVersio

    Spatial sampling of the thermospheric vertical wind field at auroral latitudes

    Get PDF
    Results are presented from two nights of bistatic Doppler measurements of neutral thermospheric winds using Fabry!Perot spectrometers at Mawson and Davis stations in Antarctica. A scanning Doppler imager (SDI) at Mawson and a narrow-field Fabry-Perot spectrometer (FPS) at Davis have been used to estimate the vertical wind at three locations along the great circle joining the two stations, in addition to the vertical wind routinely observed above each station. These data were obtained from observations of the 630.0 nm airglow line of atomic oxygen, at a nominal altitude of 240 km. Low!resolution all-sky images produced by the Mawson SDI have been used to relate disturbances in the measured vertical wind field to auroral activity and divergence in the horizontal wind field. Correlated vertical wind responses were observed on a range of horizontal scales from ~150 to 480 km. In general, the behavior of the vertical wind was in agreement with earlier studies, with strong upward winds observed poleward of the optical aurora and sustained, though weak, downward winds observed early in the night. The relation between vertical wind and horizontal divergence was seen to follow the general trend predicted by Burnside et al. (1981), whereby upward vertical winds were associated with positive divergence and vice versa; however, a scale height approximately 3–4 times greater than that modeled by NRLMSISE-00 was required to best fit the data using this relation
    • 

    corecore