10,428 research outputs found

    Spatial sampling of the thermospheric vertical wind field at auroral latitudes

    Get PDF
    Results are presented from two nights of bistatic Doppler measurements of neutral thermospheric winds using Fabry!Perot spectrometers at Mawson and Davis stations in Antarctica. A scanning Doppler imager (SDI) at Mawson and a narrow-field Fabry-Perot spectrometer (FPS) at Davis have been used to estimate the vertical wind at three locations along the great circle joining the two stations, in addition to the vertical wind routinely observed above each station. These data were obtained from observations of the 630.0 nm airglow line of atomic oxygen, at a nominal altitude of 240 km. Low!resolution all-sky images produced by the Mawson SDI have been used to relate disturbances in the measured vertical wind field to auroral activity and divergence in the horizontal wind field. Correlated vertical wind responses were observed on a range of horizontal scales from ~150 to 480 km. In general, the behavior of the vertical wind was in agreement with earlier studies, with strong upward winds observed poleward of the optical aurora and sustained, though weak, downward winds observed early in the night. The relation between vertical wind and horizontal divergence was seen to follow the general trend predicted by Burnside et al. (1981), whereby upward vertical winds were associated with positive divergence and vice versa; however, a scale height approximately 3–4 times greater than that modeled by NRLMSISE-00 was required to best fit the data using this relation

    Thermospheric winds and temperatures above Mawson, Antarctica, observed with an all-sky imaging, Fabry-Perot spectrometer

    Get PDF
    A new all-sky imaging Fabry-Perot spectrometer has been installed at Mawson station (67°36' S, 62°52' E), Antarctica. This instrument is capable of recording independent spectra from many tens of locations across the sky simultaneously. Useful operation began in March 2007, with spectra recorded on a total of 186 nights. Initial analysis has focused on the large-scale daily and average behavior of winds and temperatures derived from observations of the 630.0 nm airglow line of atomic oxygen, originating from a broad layer centered around 240 km altitude, in the ionospheric F-region. <br><br> The 1993 Horizontal Wind Model (HWM93), NRLMSISE-00 atmospheric model, and the Coupled Thermosphere/Ionosphere Plasmasphere (CTIP) model were used for comparison. During the geomagnetically quiet period studied, observed winds and temperatures were generally well modelled, although temperatures were consistently higher than NRLMSISE-00 predicted, by up to 100 K. CTIP temperatures better matched our data, particularly later in the night, but predicted zonal winds which were offset from those observed by 70–180 ms<sup>−1</sup> westward. During periods of increased activity both winds and temperatures showed much greater variability over time-scales of less than an hour. For the active night presented here, a period of 45 min saw wind speeds decrease by around 180 ms<sup>−1</sup>, and temperatures increase by approximately 100 K. Active-period winds were poorly modelled by HWM93 and CTIP, although observed median temperatures were in better agreement with NRLMSISE-00 during such periods. <br><br> Average behavior was found to be generally consistent with previous studies of thermospheric winds above Mawson. The collected data set was representative of quiet geomagnetic and solar conditions. Geographic eastward winds in the afternoon/evening generally continued until around local midnight, when winds turned equatorward. Geographic meridional and zonal winds in the afternoon were approximately 50 ms<sup>−1</sup> weaker than expected from HWM93, as was the transition to equatorward flow around midnight. There was also a negligible geographic zonal component to the post-midnight wind where HWM93 predicted strong westward flow. Average temperatures between 19:00 and 04:00 local solar time were around 60 K higher than predicted by NRLMSISE-00

    Performance and Improvements of the ATLAS jet trigger system

    Get PDF
    In 2011-2012 the Large Hadron Collider (LHC) provided proton bunch crossings every 50 ns with up to 40 interactions every crossing. These unprecedented conditions posed stringent demands on the trigger system of the ATLAS experiment, which must provide a fast rejection of background events while maintaining a high efficiency for physics signals of interest. This note focuses on the jet trigger system in ATLAS. Jets are the most prevalent high-PT objects produced at the LHC, and are an important component of a wide range of physics analyses. The challenges faced by the jet trigger system, and how its initial limitations were overcome, will be described. Performance results, including jet efficiency and resolution, will be presented.Peer Reviewe

    COMPARISON OF DIFFERENT METHODS FOR GENERATION AND ABSORPTION OF WATER WAVES

    Get PDF
    The knowledge of water wave characteristics (generation, propagation, transformation and breaking) is fundamental for hydrodynamic studies and the design of ocean, coastal and port structures. In addition to the small-scale experimental studies, the use of numerical models is also a very important tool in hydrodynamic studies. To have reliable numerical results a proper validation is required. The main objective of this paper is to compare different methods of wave generation and wave absorption in a numerical flume, and to find what is the most suited to simulate non-breaking regular wave propagation in a two-dimensional flume in deep water condition. The numerical simulations were made using the OpenFOAM® software package. Two solvers, waves2Foam and IHFoam/OlaFlow, the utility GroovyBC and a mesh stretching technique are compared. These numerical codes solve the transient Navier-Stokes equations and use a VoF (Volume of Fluid) method to identify the free surface. A solution dependence study with the methods of wave generation and wave absorption is presented. The results are also compared with the theoretical wave and experimental data. The results show that the different methods of generation produce waves similar to the theoretical and the experimental ones, only slightly differences were visible. The three method of wave dissipation considered produce very different results: IHFoam/OlaFlow is not able to dissipate the wave tested; the mesh stretching technique is able to dissipate the waves but produces a water level rise; the waves2Foam solver is able to dissipate properly the wave tested

    The Kondo-Hubbard model at half-filling

    Full text link
    We have analyzed the antiferromagnetic (J>0) Kondo-Hubbard lattice with the band at half-filling by means of a perturbative approach in the strong coupling limit, the small parameter is an arbitrary tight-binding band. The results are valid for any band shape and any dimension. We have obtained the energies of elementary charge and spin excitations as well as the magnetic correlations in order to elucidate the magnetic and charge behavior of the Kondo lattice at half-filling. Finally, we have briefly analyzed the ferromagnetic case (J<0), which is shown to be equivalent to an effective antiferromagnetic Heisenberg model.Comment: 4 pages, Proceedings of SCES98/Pari

    Low substrate temperature deposition of amorphous and microcrystalline silicon films on plastic substrates by hot-wire chemical vapor deposition

    Get PDF
    Amorphous and microcrystalline silicon films were deposited by radio-frequency plasma enhanced chemical vapor deposition (rf-PECVD) and hot-wire chemical Vapor deposition (HW-CVD) on plastic (polyethylene terephthalate-PET) at 100 degrees C and 25 degrees C. Structural properties of these films were measured by Raman spectroscopy. Electronic properties were measured by dark conductivity and photoconductivity. For amorphous silicon films deposited by rf-PECVD on PET, photosensitivities > 10(5) were obtained at both 100 degrees C and 25 degrees C, For amorphous silicon films deposited by HW-CVD, a photosensitivity of > 10(5) was obtained at 100 degrees C. Microcrystalline silicon films deposited by HW-CVD at 95% hydrogen dilution had sigma(ph) similar to 10(-4) Omega(-1) cm(-1), while maintaining a photosensitivity of similar to 10(2) at both 100 degrees C and 15 degrees C. Microcrystalline silicon films with a large crystalline fraction (>50%) can be deposited by HW-CVD all the way down to room temperature. All the films had good adhesion and mechanical stability as neither adhesive nor cohesive failure was observed even when the substrates were bent elastically.Fundação para a Ciência e Tecnologia (FCT) Universidade do Minho (UM) Fundação Luso-Americana para o Desenvolvimento (FLAD

    Doping of amorphous and microcrystalline silicon films deposited at low substrate temperatures by hot-wire chemical vapor deposition

    Get PDF
    The gas phase doping of amorphous (alpha -Si:H) and microcrystalline (muc-Si:H) silicon thin films deposited at substrate temperatures of 25 degreesC and 100 degreesC by hot-wire chemical vapor deposition is studied. Phosphine was used for n-type doping and diborane for p-type doping. The electronic and structural properties of the doped films are studied as functions of hydrogen dilution. Films were deposited on glass and polyethylene terephthalate. Similar dark conductivities, sigma (d), were obtained for the doped films deposited on either substrate. sigma (d) above 10(-6) Omega (-1) cm(-1) were obtained for a-Si:H films doped n-type at 25 degreesC and 100 degreesC (sigma (d)> 10(-4) Omega (-1) cm(-1)) and for alpha -Si:H doped p-type only at 100 degreesC. sigma (d), equal or above 10(-1) Omega (-1) cm(-1), were obtained for muc-Si:H doped p-type at 25 degreesC and 100 degreesC for Ac-Si:H doped n-type. only at 100 degreesC. Isochronal annealing at temperatures up to 200 degreesC reveals that, while the dopants are fully activated in microcrystalline samples, they are only partially activated in amorphous films deposited at a low substrate temperature.Fundação para a Ciência e Tecnologia (FCT) University of Minho (UM

    Electronic and structural properties of doped amorphous and nanocrystalline silicon deposited at low substrate temperatures by radio-frequency plasma-enhanced chemical vapor deposition

    Get PDF
    The gas phase doping of hydrogenated amorphous silicon and hydrogenated nanocrystalline silicon thin films deposited on glass and on plastic (polyethylene terephthalate) substrates is reported. Two substrate temperatures were used during deposition: 25 degreesC and 100 degreesC. Films were deposited by radio-frequency plasma-enhanced chemical vapor deposition using phosphine or diborane for n- or p-type doping, respectively. Similar electronic and structural properties are obtained for the doped films deposited on either substrate. Hydrogen dilution of silane is used to improve the electronic and structural properties of the amorphous films and to obtain nanocrystalline films. The most conductive amorphous films have n-type dark conductivity at room temperature similar to10(-3) Omega(-1) cm(-1) and similar to10(-5) Omega(-1) cm(-1) when deposited at 100degreesC and 25degreesC, respectively, or p-type room-temperature dark conductivity similar to10(-7) Omega(-1) cm(-1) at both substrate temperatures. The most conductive nanocrystalline films deposited at 100 degreesC have n- and p-type dark conductivity at room temperature above 10(-2) Omega(-1) cm(-1) while nanocrystalline films deposited at 25 degreesC only have p-type conductivity higher than 10(-2) Omega(-1) cm(-1) at room temperature. Isochronal annealing at temperatures up to 300 degreesC showed that the dopants are fully activated at the deposition temperature in doped nanocrystalline samples and that they are only partially activated in amorphous films deposited at low substrate temperatures.Fundação para a Ciência e Tecnologia (FCT) Universidade do Minho (UM
    corecore