500 research outputs found
Analytical computation of the off-axis Effective Area of grazing incidence X-ray mirrors
Focusing mirrors for X-ray telescopes in grazing incidence, introduced in the
70s, are characterized in terms of their performance by their imaging quality
and effective area, which in turn determines their sensitivity. Even though the
on-axis effective area is assumed in general to characterize the collecting
power of an X-ray optic, the telescope capability of imaging extended X-ray
sources is also determined by the variation in its effective area with the
off-axis angle. [...] The complex task of designing optics for future X-ray
telescopes entails detailed computations of both imaging quality and effective
area on- and off-axis. Because of their apparent complexity, both aspects have
been, so far, treated by using ray-tracing routines aimed at simulating the
interaction of X-ray photons with the reflecting surfaces of a given focusing
system. Although this approach has been widely exploited and proven to be
effective, it would also be attractive to regard the same problem from an
analytical viewpoint, to assess an optical design of an X-ray optical module
with a simpler calculation than a ray-tracing routine. [...] We have developed
useful analytical formulae for the off-axis effective area of a
double-reflection mirror in the double cone approximation, requiring only an
integration and the standard routines to calculate the X-ray coating
reflectivity for a given incidence angle. [...] Algebraic expressions are
provided for the mirror geometric area, as a function of the off-axis angle.
Finally, the results of the analytical computations presented here are
validated by comparison with the corresponding predictions of a ray-tracing
code.Comment: 12 pages, 11 figures, accepted for publication in "Astronomy &
Astrophysics", section "Instruments, observational techniques, and data
processing". Updated version after grammatical revision and typos correctio
Simbol-X Hard X-ray Focusing Mirrors: Results Obtained During the Phase A Study
Simbol-X will push grazing incidence imaging up to 80 keV, providing a strong
improvement both in sensitivity and angular resolution compared to all
instruments that have operated so far above 10 keV. The superb hard X-ray
imaging capability will be guaranteed by a mirror module of 100 electroformed
Nickel shells with a multilayer reflecting coating. Here we will describe the
technogical development and solutions adopted for the fabrication of the mirror
module, that must guarantee an Half Energy Width (HEW) better than 20 arcsec
from 0.5 up to 30 keV and a goal of 40 arcsec at 60 keV. During the phase A,
terminated at the end of 2008, we have developed three engineering models with
two, two and three shells, respectively. The most critical aspects in the
development of the Simbol-X mirrors are i) the production of the 100 mandrels
with very good surface quality within the timeline of the mission; ii) the
replication of shells that must be very thin (a factor of 2 thinner than those
of XMM-Newton) and still have very good image quality up to 80 keV; iii) the
development of an integration process that allows us to integrate these very
thin mirrors maintaining their intrinsic good image quality. The Phase A study
has shown that we can fabricate the mandrels with the needed quality and that
we have developed a valid integration process. The shells that we have produced
so far have a quite good image quality, e.g. HEW <~30 arcsec at 30 keV, and
effective area. However, we still need to make some improvements to reach the
requirements. We will briefly present these results and discuss the possible
improvements that we will investigate during phase B.Comment: 6 pages, 3 figures, invited talk at the conference "2nd International
Simbol-X Symposium", Paris, 2-5 december, 200
Unexpected frequency of genomic alterations in histologically normal colonic tissue from colon cancer patients
As shown by genomic studies, colorectal cancer (CRC) is a highly heterogeneous disease, where copy number alterations (CNAs) may greatly vary among different patients. To explore whether CNAs may be present also in histologically normal tissues from patients affected by CRC, we performed CGH + SNP Microarray on 15 paired tumoral and normal samples. Here, we report for the first time the occurrence of CNAs as a common feature of the histologically normal tissue from CRC patients, particularly CNAs affecting different oncogenes and tumor-suppressor genes, including some not previously reported in CRC and others known as being involved in tumor progression. Moreover, from the comparison of normal vs paired tumoral tissue, we were able to identify three groups: samples with an increased number of CNAs in tumoral vs normal tissue, samples with a similar number of CNAs in both tissues, and samples with a decrease of CNAs in tumoral vs normal tissue, which may be likely due to a selection of the cell population within the tumor. In conclusion, our approach allowed us to uncover for the first time an unexpected frequency of genetic alteration in normal tissue, suggesting that tumorigenic genetic lesions are already present in histologically normal colonic tissue and that the use in array comparative genomic hybridization (CGH) studies of normal samples as reference for the paired tumors can lead to misrepresented genomic data, which may be incomplete or limited, especially if used for the research of target molecules for personalized therapy and for the possible correlation with clinical outcome
FAVOR (FAst Variability Optical Registration) -- A Two-telescope Complex for Detection and Investigation of Short Optical Transients
An astronomical complex intended to detect optical transients (OTs) in a wide
field and follow them up with high time resolution investigation is described.Comment: 4 pages, 3 figures. To be published in "Il Nuovo Cimento",
Proceedings of the 4th Rome Workshop on Gamma-Ray Bursts in the Afterglow
Era, eds. L. Piro, L. Amati, S. Covino, B. Gendr
Mirrors for X-ray telescopes: Fresnel diffraction-based computation of point spread functions from metrology
The imaging sharpness of an X-ray telescope is chiefly determined by the
optical quality of its focusing optics, which in turn mostly depends on the
shape accuracy and the surface finishing of the grazing-incidence X-ray mirrors
that compose the optical modules. To ensure the imaging performance during the
mirror manufacturing, a fundamental step is predicting the mirror point spread
function (PSF) from the metrology of its surface. Traditionally, the PSF
computation in X-rays is assumed to be different depending on whether the
surface defects are classified as figure errors or roughness. [...] The aim of
this work is to overcome this limit by providing analytical formulae that are
valid at any light wavelength, for computing the PSF of an X-ray mirror shell
from the measured longitudinal profiles and the roughness power spectral
density (PSD), without distinguishing spectral ranges with different
treatments. The method we adopted is based on the Huygens-Fresnel principle for
computing the diffracted intensity from measured or modeled profiles. In
particular, we have simplified the computation of the surface integral to only
one dimension, owing to the grazing incidence that reduces the influence of the
azimuthal errors by orders of magnitude. The method can be extended to optical
systems with an arbitrary number of reflections - in particular the Wolter-I,
which is frequently used in X-ray astronomy - and can be used in both near- and
far-field approximation. Finally, it accounts simultaneously for profile,
roughness, and aperture diffraction. We describe the formalism with which one
can self-consistently compute the PSF of grazing-incidence mirrors, [...]
Finally, we validate this by comparing the simulated PSF of a real Wolter-I
mirror shell with the measured PSF in hard X-rays.Comment: Final version with typos correcte
Simultaneous Swift and REM monitoring of the blazar PKS0537-441 in 2005
The blazar PKS0537-441 has been observed by Swift between the end of 2004 and
November 2005. The BAT monitored it recurrently for a total of 2.7 Ms, and the
XRT and UVOT pointed it on seven occasions for a total of 67 ks, making it one
of the AGNs best monitored by Swift. The automatic optical and infrared
telescope REM has monitored simultaneously the source at all times. In
January-February 2005 PKS0537-441 has been detected at its brightest in optical
and X-rays: more than a factor of 2 brighter in X-rays and about a factor 60
brighter in the optical than observed in December 2004. The July 2005
observation recorded a fainter X-ray state. The simultaneous optical state,
monitored by both Swift UVOT and REM, is high, and in the VRI bands it is
comparable to what was recorded in early January 2005, before the outburst. In
November 2005, the source subsided both in X-rays and optical to a quiescent
state, having decreased by factors of ~4 and ~60 with respect to the
January-February 2005 outburst, respectively. Our monitoring shows an overall
well correlated optical and X-ray decay. On the shorter time scales (days or
hours), there is no obvious correlation between X-ray and optical variations,
but the former tend to be more pronounced, opposite to what is observed on
monthly time scales. The widely different amplitude of the long term
variability in optical and X-rays is very unusual and makes this observation a
unique case study for blazar activity. The spectral energy distributions are
interpreted in terms of the synchrotron and inverse Compton mechanisms within a
jet where the plasma radiates via internal shocks and the dissipation depends
on the distance of the emitting region from the central engine (abridged).Comment: 24 pages, 7 figures, 3 tables, in press in the Ap
- …