2,142 research outputs found

    Soft x-rays absorption and high-resolution powder x-ray diffraction study of superconducting CaxLa(1-x)Ba(1.75-x)La(0.25+x)Cu3Oy system

    Full text link
    We have studied the electronic structure of unoccupied states measured by O K-edge and Cu L-edge x-ray absorption spectroscopy (XAS), combined with crystal structure studied by high resolution powder x-ray diffraction (HRPXRD), of charge-compensated layered superconducting CaxLa(1-x)Ba(1.75-x)La(0.25+x)Cu3Oy (0<x<0.4, 6.4<y<7.3) cuprate. A detailed analysis shows that, apart from hole doping, chemical pressure on the electronically active CuO2 plane due to the lattice mismatch with the spacer layers greatly influences the superconducting properties of this system. The results suggest chemical pressure to be the most plausible parameter to control the maximum critical temperatures (Tcmax) in different cuprate families at optimum hole density.Comment: 14 pages, 11 figures, accepted for publication in Journal of Physics and Chemistry of Solid

    A spectral method for bipartizing a network and detecting a large anti-community

    Get PDF
    Relations between discrete quantities such as people, genes, or streets can be described by networks, which consist of nodes that are connected by edges. Network analysis aims to identify important nodes in a network and to uncover structural properties of a network. A network is said to be bipartite if its nodes can be subdivided into two nonempty sets such that there are no edges between nodes in the same set. It is a difficult task to determine the closest bipartite network to a given network. This paper describes how a given network can be approximated by a bipartite one by solving a sequence of fairly simple optimization problems. The algorithm also produces a node permutation which makes the possible bipartite nature of the initial adjacency matrix evident, and identifies the two sets of nodes. We finally show how the same procedure can be used to detect the presence of a large anti-community in a network and to identify it.Comment: 30 page

    Experiments and modeling of the growth of C. sorokiniana in lab batch and BIOCOIL photobioreactors for lipid production

    Get PDF
    A novel mathematical model for the quantitative assessment of the effect of dissolved nitrogen on the autotrophic batch-growth and lipid accumulation of C. sorokiniana, is proposed in this work. Model results have been validated through comparison with suitable experimental data performed in lab photobioreactors. Further experiments have been then performed using a BIOCOIL operated in fed-batch mode. The experimental results have been successfully predicted through the proposed model. Therefore, the model might represent a first step toward the development of a tool for the scale-up and optimization of the operating conditions of BIOCOIL photobioreactors. Furthermore, the fatty acid methyl esters obtained by transesterification of lipids extracted from C. sorokiniana, have been analysed in view of the assessment of their usability for producing biofuels. Subsequently, on the basis of the fatty acids profile, a wide range of biodiesel fuel properties have been predicted through suitable software

    Field sampling of soil pore water to evaluate the mobile fraction of trace elements in the Iglesiente area (SW Sardinia, Italy)

    Get PDF
    Field soil pore water monitoring was applied in a highly heavy-metal contaminated area in SW Sardinia, Italy, as a direct, realistic measure of heavy metal mobility. The main chemistry of pore waters well reflects the local characteristics of soils, ranging from Ca-SO4 to (Ca)Mg-HCO3 to Ca(Na)-SO4(Cl), with a wide range of conductivity. The mobility of Zn and Pb is apparently controlled by equilibrium with minerals such as hydrozincite or smithsonite, and cerussite, respectively. These results allow a correct estimate of the actual environmental risk associated with the presence of heavy metals in soils, and may serve as a supporting tool for phytoremediation planning

    The dust and cold gas content of local star forming galaxies

    Get PDF
    We use dust masses (MdustM_{dust}) derived from far-infrared data and molecular gas masses (MmolM_{mol}) based on CO luminosity, to calibrate proxies based on a combination of the galaxy Balmer decrement, disk inclination and gas metallicity. We use such proxies to estimate MdustM_{dust} and MmolM_{mol} in the local SDSS sample of star-forming galaxies (SFGs). We study the distribution of MdustM_{dust} and MmolM_{mol} along and across the Main Sequence (MS) of SFGs. We find that MdustM_{dust} and MmolM_{mol} increase rapidly along the MS with increasing stellar mass (M∗M_*), and more marginally across the MS with increasing SFR (or distance from the relation). The dependence on M∗M_* is sub-linear for both MdustM_{dust} and MmolM_{mol}. Thus, the fraction of dust (fdustf_{dust}) and molecular gas mass (fmolf_{mol}) decreases monotonically towards large M∗M_*. The star formation efficiency (SFE, the inverse of the molecular gas depletion time) depends strongly on the distance from the MS and it is constant along the MS. As nearly all galaxies in the sample are central galaxies, we estimate the dependence of fdustf_{dust} and fgasf_{gas} on the host halo mass and find a tight anti-correlation. As the region where the MS is bending is numerically dominated by massive halos, we conclude that the bending of the MS is due to lower availability of molecular gas mass in massive halos rather than a lower efficiency in forming stars.Comment: Accepted for publication in MNRAS, 12 pages, 9 figure

    Status of charcoal canker on oak trees at a site of community importance: case study of the relict castelfidardo forest (Sic area it520008, castelfidardo, an, Italy)

    Get PDF
    Oaks are dominant and key tree species in Mediterranean forest ecosystems. However, in recent decades, oak forests have been heavily impacted by oak decline, a worldwide phenomenon exacerbated by climate change. The charcoal disease agent Biscogniauxia mediterranea is involved in the decline of Mediterranean oak formations in a variety of contexts. Here, we investigated the impact and role of B. mediterranea in the decline of oaks in Castelfidardo Forest, a relict wood of the late Holocene and a Site of Community Importance. We established five plots within which we recorded tree positions, any symptoms and signs of decline, association of B. mediterranea to declining trees, and deadwood and associated mycota. Of 471 oaks inspected, 7.0% showed brownish exudates on the stems, 46.9% showed epicormic shoots along the main trunk, and 24.4% showed black carbonaceous stromata on diseased branches and trunks. The decline was most severe for Quercus cerris, which comprised plots #4 and #5, at 50.0% (81/162 trees) and 29.0% (33/114), respectively; then for Quercus robur for plot #3, at 40.0% (38/95); and finally for Quercus pubescens for plots #1 and #2, at 13.7% (7/51) and 12.3% (6/49), respectively. Bark tissues were collected from trees with charcoal cankers and taken to the laboratory for microscopic examination and identification by mycological and molecular methods. This investigation revealed a close association between oaks with pronounced reduction of vitality and incidence of B. mediterranea. Deadwood was equally distributed among the five plots, and was heavily colonized by Basidiomycota. The high incidence of the charcoal canker pathogen B. mediterranea appeared to be related to environmental stresses. However, the absence of silvicultural management, high competition among physiologically mature trees, and the geographic isolation of this residual forest may have predisposed oaks to decline

    Longitudinal and azimuthal evolution of two-particle transverse momentum correlations in Pb–Pb collisions at sNN=2.76TeV

    Get PDF
    This paper presents the first measurements of the charge independent (CI) and charge dependent (CD) two-particle transverse momentum correlators G2CI and G2CD in Pb–Pb collisions at sNN=2.76TeV by the ALICE collaboration. The two-particle transverse momentum correlator G2 was introduced as a measure of the momentum current transfer between neighboring system cells. The correlators are measured as a function of pair separation in pseudorapidity (Δη) and azimuth (Δφ) and as a function of collision centrality. From peripheral to central collisions, the correlator G2CI exhibits a longitudinal broadening while undergoing a monotonic azimuthal narrowing. By contrast, G2CD exhibits a narrowing along both dimensions. These features are not reproduced by models such as HIJING and AMPT. However, the observed narrowing of the correlators from peripheral to central collisions is expected to result from the stronger transverse flow profiles produced in more central collisions and the longitudinal broadening is predicted to be sensitive to momentum currents and the shear viscosity per unit of entropy density η/s of the matter produced in the collisions. The observed broadening is found to be consistent with the hypothesized lower bound of η/s and is in qualitative agreement with values obtained from anisotropic flow measurements

    Production of light-flavor hadrons in pp collisions at √s=7and√s=13TeV

    Get PDF
    The production of π±, K ±, KS0, K ∗(892) , p , ϕ(1020) , Λ , Ξ -, Ω -, and their antiparticles was measured in inelastic proton–proton (pp) collisions at a center-of-mass energy of s = 13 TeV at midrapidity (| y| < 0.5) as a function of transverse momentum (pT) using the ALICE detector at the CERN LHC. Furthermore, the single-particle pT distributions of KS0, Λ , and Λ ¯ in inelastic pp collisions at s=7 TeV are reported here for the first time. The pT distributions are studied at midrapidity within the transverse momentum range 0 ≤ pT≤ 20 GeV/c, depending on the particle species. The pT spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower s and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high pT with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and xT≡2pT/s scaling properties of hadron production are also studied. As the collision energy increases from s = 7–13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of s, while ratios for multi-strange hadrons indicate enhancements. The pT-differential cross sections of π±, K ± and p (p ¯) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for π± and p (p ¯) at high pT

    Genome-annotated bacterial collection of the barley rhizosphere microbiota

    Get PDF
    A culture collection of 41 bacteria isolated from the rhizosphere of cultivated barley (Hordeum vulgare subsp. vulgare) is available at the Division of Plant Sciences, University of Dundee (UK). The data include information on genes putatively implicated in nitrogen fixation, HCN channels, phosphate solubilization, and linked whole-genome sequences

    Analysis of Score-Level Fusion Rules for Deepfake Detection

    Get PDF
    Deepfake detection is of fundamental importance to preserve the reliability of multimedia communications. Modern deepfake detection systems are often specialized on one or more types of manipulation but are not able to generalize. On the other hand, when properly designed, ensemble learning and fusion techniques can reduce this issue. In this paper, we exploit the complementarity of different individual classifiers and evaluate which fusion rules are best suited to increase the generalization capacity of modern deepfake detection systems. We also give some insights to designers for selecting the most appropriate approach
    • …
    corecore