359 research outputs found

    Not Guilty by Reason of Neuroimaging: The Need for Cautionary Jury Instructions for Neuroscience Evidence in Criminal Trials

    Get PDF
    Neuroimaging technology gives researchers the ability to see structures and functions of the human brain. As the technology advances, it is beginning to change the way the legal field understands the brain and its impact on legal concepts of capacity, sanity, guilt, and innocence. However, the sophisticated technology poses risks that juries will misunderstand the limits of the science or misapply the technical findings to a particular case. To combat the risk of undue prejudice, this Note proposes a cautionary jury instruction designed to remind jurors of the technical and legal limits of bringing neuroimages into the courtroom

    The quality of surgical pathology care for men undergoing radical prostatectomy in the U.S.

    Full text link
    BACKGROUND. The authors assessed adherence with the College of American Pathologists (CAP) radical prostatectomy (RP) practice protocol in a national sample of men who underwent RP for early-stage prostate cancer. METHODS. Using the National Cancer Data Base, the authors identified a nationally representative sample of 1240 men (unweighted) who underwent RP. For each patient, local cancer registrars performed an explicit medical record review to assess patient-level compliance with surgical pathology report documentation of 7 morphologic criteria (ie, quality indicators). Applying the CAP prognostic factor classification framework, composite measures and all-or-none measures of quality indicator compliance were calculated for the following analytic categories: 1) a strict subset of CAP category I prognostic factors (3 indicators), 2) a broad subset of CAP category I factors (6 indicators), and 3) the full set of 7 indicators. RESULTS. Among a weighted sample of 24,420 patients who underwent RP, compliance with documentation of the CAP category I factors varied from 54% (95% confidence interval [95% CI], 50–58%) for pathologic tumor, lymph node, metastases classification (according to the American Joint Committee on Cancer staging system) to 97% (95% CI, 96–99%) for Gleason score. In composite, RP pathology reports contained 83% (95% CI, 81–84%), 85% (95% CI, 84–87%), and 79% (95% CI, 78–80%) of the recommended data elements measured by the strict CAP category I subset, the broad CAP category I subset, and the full set of 7 indicators, respectively. In contrast to the generally higher composite scores, only 52% (95% CI, 48–56%) and 41% (95% CI, 37–45%) of men who underwent RP had complete documentation in their pathology reports for the strict and broad CAP category I subsets, respectively. CONCLUSIONS. RP surgical pathology reports contained most of the recommended data elements; however, the frequent absence of pathologic stage provides an opportunity for quality improvement. Cancer 2007. © 2007 American Cancer Society.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56046/1/22698_ftp.pd

    Clinical assessment of DSM-IV anxiety disorders in fragile X syndrome: prevalence and characterization

    Get PDF
    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability (ID). Anxiety and social withdrawal are considered core features of the FXS phenotype, yet there is limited diagnostic evidence of the prevalence of formal anxiety disorders in FXS. This study assessed the prevalence of anxiety disorders in a sample of 58 males and 39 females with FXS (ages 5.0–33.3 years). Participants’ parents completed the Anxiety Disorders Interview Schedule (ADIS-IV), a clinical interview based on DSM-IV criteria, and the Anxiety Depression and Mood Scale (ADAMS), a psychiatric disorders screening instrument normed in ID. We conducted cognitive (IQ) and autism (AUT) assessments and surveyed medication use. Despite a high rate of psychopharmacological treatment, 86.2% of males and 76.9% of females met criteria for an anxiety disorder, with social phobia and specific phobia the most commonly diagnosed. Proband status, gender, and IQ were not significantly related to any anxiety disorders, however significantly higher rates of a few anxiety disorders were found in older age and AUT groups. Significant correlations between ADIS diagnoses and ADAMS scores provided cross-validation of instruments, indicating that the ADIS is suitable for use in FXS. A greater percentage of our sample met criteria for most anxiety disorders than has been reported in other ID groups or the general population. The rate of anxiety compared to general ID suggests that the FMR1 full mutation confers an especially high risk for these disorders, regardless of factors commonly associated with FXS clinical involvement. A thorough clinical assessment and treatment of anxiety should be included in the FXS standard of care

    Seasonality of Leaf and Fig Production in Ficus squamosa, a Fig Tree with Seeds Dispersed by Water

    Get PDF
    The phenology of plants reflects selection generated by seasonal climatic factors and interactions with other plants and animals, within constraints imposed by their phylogenetic history. Fig trees (Ficus) need to produce figs year-round to support their short-lived fig wasp pollinators, but this requirement is partially de-coupled in dioecious species, where female trees only develop seeds, not pollinator offspring. This allows female trees to concentrate seed production at more favorable times of the year. Ficus squamosa is a riparian species whose dispersal is mainly by water, rather than animals. Seeds can float and travel in long distances. We recorded the leaf and reproductive phenology of 174 individuals for three years in Chiang Mai, Northern Thailand. New leaves were produced throughout the year. Fig production occurred year-round, but with large seasonal variations that correlated with temperature and rainfall. Female and male trees initiated maximal fig crops at different times, with production in female trees confined mainly to the rainy season and male figs concentrating fig production in the preceding months, but also often bearing figs continually. Ficus squamosa concentrates seed production by female plants at times when water levels are high, favouring dispersal by water, and asynchronous flowering within male trees allow fig wasps to cycle there, providing them with potential benefits by maintaining pollinators for times when female figs become available to pollinate

    Point absorbers in Advanced LIGO

    Get PDF
    Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry–Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and, hence, limit GW sensitivity, but it suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises

    Environmental Noise in Advanced LIGO Detectors

    Get PDF
    The sensitivity of the Advanced LIGO detectors to gravitational waves can be affected by environmental disturbances external to the detectors themselves. Since the transition from the former initial LIGO phase, many improvements have been made to the equipment and techniques used to investigate these environmental effects. These methods have aided in tracking down and mitigating noise sources throughout the first three observing runs of the advanced detector era, keeping the ambient contribution of environmental noise below the background noise levels of the detectors. In this paper we describe the methods used and how they have led to the mitigation of noise sources, the role that environmental monitoring has played in the validation of gravitational wave events, and plans for future observing runs

    Approaching the motional ground state of a 10 kg object

    Get PDF
    The motion of a mechanical object -- even a human-sized object -- should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult: the thermal environment masks any quantum signature of the object's motion. Indeed, the thermal environment also masks effects of proposed modifications of quantum mechanics at large mass scales. We prepare the center-of-mass motion of a 10 kg mechanical oscillator in a state with an average phonon occupation of 10.8. The reduction in temperature, from room temperature to 77 nK, is commensurate with an 11 orders-of-magnitude suppression of quantum back-action by feedback -- and a 13 orders-of-magnitude increase in the mass of an object prepared close to its motional ground state. This begets the possibility of probing gravity on massive quantum systems.Comment: published version containing minor change

    Point absorbers in Advanced LIGO

    Get PDF
    Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nano-meter scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduces the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power build-up in second generation gravitational wave detectors (dual-recycled Fabry-Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and hence, limit GW sensitivity, but suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises

    LIGO’s quantum response to squeezed states

    Get PDF
    Gravitational Wave interferometers achieve their profound sensitivity by combining a Michelson interferometer with optical cavities, suspended masses, and now, squeezed quantum states of light. These states modify the measurement process of the LIGO, VIRGO and GEO600 interferometers to reduce the quantum noise that masks astrophysical signals; thus, improvements to squeezing are essential to further expand our gravitational view of the universe. Further reducing quantum noise will require both lowering decoherence from losses as well more sophisticated manipulations to counter the quantum back-action from radiation pressure. Both tasks require fully understanding the physical interactions between squeezed light and the many components of km-scale interferometers. To this end, data from both LIGO observatories in observing run three are expressed using frequency-dependent metrics to analyze each detector's quantum response to squeezed states. The response metrics are derived and used to concisely describe physical mechanisms behind squeezing's simultaneous interaction with transverse-mode selective optical cavities and the quantum radiation pressure noise of suspended mirrors. These metrics and related analysis are broadly applicable for cavity-enhanced optomechanics experiments that incorporate external squeezing, and -- for the first time -- give physical descriptions of every feature so far observed in the quantum noise of the LIGO detectors

    Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants

    Get PDF
    partially_open1412sìWe present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO detector data from the first six months of the third Advanced LIGO and Virgo observing run using the weave semicoherent method, which sums matched-filter detection-statistic values over many time segments spanning the observation period. No gravitational wave signal is detected in the search band of 20–976 Hz for assumed source ages greater than 300 years for Cas A and greater than 700 years for Vela Jr. Estimates from simulated continuous wave signals indicate we achieve the most sensitive results to date across the explored parameter space volume, probing to strain magnitudes as low as ∼6.3×10^−26 for Cas A and ∼5.6×10^−26 for Vela Jr. at frequencies near 166 Hz at 95% efficiency.openAbbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Albanesi, S.; Allocca, A.; Altin, P. A.; Amato, A.; Anand, C.; Anand, S.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Andrade, T.; Andres, N.; Andrić, T.; Angelova, S. V.; Ansoldi, S.; Antelis, J. M.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arène, M.; Arnaud, N.; Aronson, S. M.; Arun, K. G.; Asali, Y.; Ashton, G.; Assiduo, M.; Aston, S. M.; Astone, P.; Aubin, F.; Austin, C.; Babak, S.; Badaracco, F.; Bader, M. K. M.; Badger, C.; Bae, S.; Baer, A. M.; Bagnasco, S.; Bai, Y.; Baird, J.; Ball, M.; Ballardin, G.; Ballmer, S. W.; Balsamo, A.; Baltus, G.; Banagiri, S.; Bankar, D.; Barayoga, J. C.; Barbieri, C.; Barish, B. C.; Barker, D.; Barneo, P.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Bawaj, M.; Bayley, J. C.; Baylor, A. C.; Bazzan, M.; Bécsy, B.; Bedakihale, V. M.; Bejger, M.; Belahcene, I.; Benedetto, V.; Beniwal, D.; Bennett, T. F.; Bentley, J. D.; BenYaala, M.; Bergamin, F.; Berger, B. K.; Bernuzzi, S.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beveridge, D.; Bhandare, R.; Bhardwaj, U.; Bhattacharjee, D.; Bhaumik, S.; Bilenko, I. A.; Billingsley, G.; Bini, S.; Birney, R.; Birnholtz, O.; Biscans, S.; Bischi, M.; Biscoveanu, S.; Bisht, A.; Biswas, B.; Bitossi, M.; Bizouard, M.-A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bobba, F.; Bode, N.; Boer, M.; Bogaert, G.; Boldrini, M.; Bonavena, L. D.; Bondu, F.; Bonilla, E.; Bonnand, R.; Booker, P.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, N.; Bose, S.; Bossilkov, V.; Boudart, V.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Bramley, A.; Branch, A.; Branchesi, M.; Brau, J. E.; Breschi, M.; Briant, T.; Briggs, J. H.; Brillet, A.; Brinkmann, M.; Brockill, P.; Brooks, A. F.; Brooks, J.; Brown, D. D.; Brunett, S.; Bruno, G.; Bruntz, R.; Bryant, J.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buscicchio, R.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callaghan, J. D.; Callister, T. A.; Calloni, E.; Cameron, J.; Camp, J. B.; Canepa, M.; Canevarolo, S.; Cannavacciuolo, M.; Cannon, K. C.; Cao, H.; Capote, E.; Carapella, G.; Carbognani, F.; Carlin, J. B.; Carney, M. F.; Carpinelli, M.; Carrillo, G.; Carullo, G.; Carver, T. L.; Diaz, J. Casanueva; Casentini, C.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Ceasar, M.; Cella, G.; Cerdá-Durán, P.; Cesarini, E.; Chaibi, W.; Chakravarti, K.; Subrahmanya, S. Chalathadka; Champion, E.; Chan, C.-H.; Chan, C.; Chan, C. L.; Chan, K.; Chandra, K.; Chanial, P.; Chao, S.; Charlton, P.; Chase, E. A.; Chassande-Mottin, E.; Chatterjee, C.; Chatterjee, Debarati; Chatterjee, Deep; Chaturvedi, M.; Chaty, S.; Chen, H. Y.; Chen, J.; Chen, X.; Chen, Y.; Chen, Z.; Cheng, H.; Cheong, C. K.; Cheung, H. Y.; Chia, H. Y.; Chiadini, F.; Chiarini, G.; Chierici, R.; Chincarini, A.; Chiofalo, M. L.; Chiummo, A.; Cho, G.; Cho, H. S.; Choudhary, R. K.; Choudhary, S.; Christensen, N.; Chu, Q.; Chua, S.; Chung, K. W.; Ciani, G.; Ciecielag, P.; Cieślar, M.; Cifaldi, M.; Ciobanu, A. A.; Ciolfi, R.; Cipriano, F.; Cirone, A.; Clara, F.; Clark, E. N.; Clark, J. A.; Clarke, L.; Clearwater, P.; Clesse, S.; Cleva, F.; Coccia, E.; Codazzo, E.; Cohadon, P.-F.; Cohen, D. E.; Cohen, L.; Colleoni, M.; Collette, C. G.; Colombo, A.; Colpi, M.; Compton, C. M.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corezzi, S.; Corley, K. R.; Cornish, N.; Corre, D.; Corsi, A.; Cortese, S.; Costa, C. A.; Cotesta, R.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S. T.; Cousins, B.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Criswell, A. W.; Croquette, M.; Crowder, S. G.; Cudell, J. R.; Cullen, T. J.; Cumming, A.; Cummings, R.; Cunningham, L.; Cuoco, E.; Curyło, M.; Dabadie, P.; Canton, T. Dal; Dall’Osso, S.; Dálya, G.; Dana, A.; DaneshgaranBajastani, L. M.; D’Angelo, B.; Danilishin, S.; D’Antonio, S.; Danzmann, K.; Darsow-Fromm, C.; Dasgupta, A.; Datrier, L. E. H.; Datta, S.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Davis, M. C.; Daw, E. J.; Dean, R.; DeBra, D.; Deenadayalan, M.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Favero, V.; De Lillo, F.; De Lillo, N.; Del Pozzo, W.; DeMarchi, L. M.; De Matteis, F.; D’Emilio, V.; Demos, N.; Dent, T.; Depasse, A.; De Pietri, R.; De Rosa, R.; De Rossi, C.; DeSalvo, R.; De Simone, R.; Dhurandhar, S.; Díaz, M. C.; Diaz-Ortiz, M.; Didio, N. A.; Dietrich, T.; Di Fiore, L.; Di Fronzo, C.; Di Giorgio, C.; Di Giovanni, F.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Ding, B.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Divakarla, A. K.; Dmitriev, A.; Doctor, Z.; D’Onofrio, L.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Drago, M.; Driggers, J. C.; Drori, Y.; Ducoin, J.-G.; Dupej, P.; Durante, O.; D’Urso, D.; Duverne, P.-A.; Dwyer, S. E.; Eassa, C.; Easter, P. J.; Ebersold, M.; Eckhardt, T.; Eddolls, G.; Edelman, B.; Edo, T. B.; Edy, O.; Effler, A.; Eichholz, J.; Eikenberry, S. S.; Eisenmann, M.; Eisenstein, R. A.; Ejlli, A.; Engelby, E.; Errico, L.; Essick, R. C.; Estellés, H.; Estevez, D.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Ewing, B. E.; Fafone, V.; Fair, H.; Fairhurst, S.; Farah, A. M.; Farinon, S.; Farr, B.; Farr, W. M.; Farrow, N. W.; Fauchon-Jones, E. J.; Favaro, G.; Favata, M.; Fays, M.; Fazio, M.; Feicht, J.; Fejer, M. M.; Fenyvesi, E.; Ferguson, D. L.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, T. A.; Fidecaro, F.; Figura, P.; Fiori, I.; Fishbach, M.; Fisher, R. P.; Fittipaldi, R.; Fiumara, V.; Flaminio, R.; Floden, E.; Fong, H.; Font, J. A.; Fornal, B.; Forsyth, P. W. F.; Franke, A.; Frasca, S.; Frasconi, F.; Frederick, C.; Freed, J. P.; Frei, Z.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fronzé, G. G.; Fulda, P.; Fyffe, M.; Gabbard, H. A.; Gadre, B. U.; Gair, J. R.; Gais, J.; Galaudage, S.; Gamba, R.; Ganapathy, D.; Ganguly, A.; Gaonkar, S. G.; Garaventa, B.; García-Núñez, C.; García-Quirós, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gayathri, V.; Gemme, G.; Gennai, A.; George, J.; Gerberding, O.; Gergely, L.; Gewecke, P.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, Shaon; Ghosh, Shrobana; Giacomazzo, B.; Giacoppo, L.; Giaime, J. A.; Giardina, K. D.; Gibson, D. R.; Gier, C.; Giesler, M.; Giri, P.; Gissi, F.; Glanzer, J.; Gleckl, A. E.; Godwin, P.; Goetz, E.; Goetz, R.; Gohlke, N.; Goncharov, B.; González, G.; Gopakumar, A.; Gosselin, M.; Gouaty, R.; Gould, D. W.; Grace, B.; Grado, A.; Granata, M.; Granata, V.; Grant, A.; Gras, S.; Grassia, P.; Gray, C.; Gray, R.; Greco, G.; Green, A. C.; Green, R.; Gretarsson, A. M.; Gretarsson, E. M.; Griffith, D.; Griffiths, W.; Griggs, H. L.; Grignani, G.; Grimaldi, A.; Grimm, S. J.; Grote, H.; Grunewald, S.; Gruning, P.; Guerra, D.; Guidi, Gianluca; Guimaraes, A. R.; Guixé, G.; Gulati, H. K.; Guo, H.-K.; Guo, Y.; Gupta, Anchal; Gupta, Anuradha; Gupta, P.; Gustafson, E. K.; Gustafson, R.; Guzman, F.; Haegel, L.; Halim, O.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O.; Hansen, H.; Hansen, T. J.; Hanson, J.; Harder, T.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hartwig, D.; Haskell, B.; Hasskew, R. K.; Haster, C.-J.; Haughian, K.; Hayes, F. J.; Healy, J.; Heidmann, A.; Heidt, A.; Heintze, M. C.; Heinze, J.; Heinzel, J.; Heitmann, H.; Hellman, F.; Hello, P.; Helmling-Cornell, A. F.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennes, E.; Hennig, J.; Hennig, M. H.; Hernandez, A. G.; Vivanco, F. Hernandez; Heurs, M.; Hild, S.; Hill, P.; Hines, A. S.; Hochheim, S.; Hofman, D.; Hohmann, J. N.; Holcomb, D. G.; Holland, N. A.; Hollows, I. J.; Holmes, Z. J.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Hourihane, S.; Howell, E. J.; Hoy, C. G.; Hoyland, D.; Hreibi, A.; Hsu, Y.; Huang, Y.; Hübner, M. T.; Huddart, A. D.; Hughey, B.; Hui, V.; Husa, S.; Huttner, S. H.; Huxford, R.; Huynh-Dinh, T.; Idzkowski, B.; Iess, A.; Ingram, C.; Isi, M.; Isleif, K.; Iyer, B. R.; JaberianHamedan, V.; Jacqmin, T.; Jadhav, S. J.; Jadhav, S. P.; James, A. L.; Jan, A. Z.; Jani, K.; Janquart, J.; Janssens, K.; Janthalur, N. N.; Jaranowski, P.; Jariwala, D.; Jaume, R.; Jenkins, A. C.; Jenner, K.; Jeunon, M.; Jia, W.; Johns, G. R.; Jones, A. W.; Jones, D. I.; Jones, J. D.; Jones, P.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Juste, V.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kao, Y.; Kapadia, S. J.; Kapasi, D. P.; Karat, S.; Karathanasis, C.; Karki, S.; Kashyap, R.; Kasprzack, M.; Kastaun, W.; Katsanevas, S.; Katsavounidis, E.; Katzman, W.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Key, J. S.; Khadka, S.; Khalili, F. Y.; Khan, S.; Khazanov, E. A.; Khetan, N.; Khursheed, M.; Kijbunchoo, N.; Kim, C.; Kim, J. C.; Kim, K.; Kim, W. S.; Kim, Y.-M.; Kimball, C.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knee, A. M.; Knowles, T. D.; Knyazev, E.; Koch, P.; Koekoek, G.; Koley, S.; Kolitsidou, P.; Kolstein, M.; Komori, K.; Kondrashov, V.; Kontos, A.; Koper, N.; Korobko, M.; Kovalam, M.; Kozak, D. B.; Kringel, V.; Krishnendu, N. V.; Królak, A.; Kuehn, G.; Kuei, F.; Kuijer, P.; Kumar, A.; Kumar, P.; Kumar, Rahul; Kumar, Rakesh; Kuns, K.; Kuwahara, S.; Lagabbe, P.; Laghi, D.; Lalande, E.; Lam, T. L.; Lamberts, A.; Landry, M.; Lane, B. B.; Lang, R. N.; Lange, J.; Lantz, B.; La Rosa, I.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lecoeuche, Y. K.; Lee, H. M.; Lee, H. W.; Lee, J.; Lee, K.; Lehmann, J.; Lemaître, A.; Leroy, N.; Letendre, N.; Levesque, C.; Levin, Y.; Leviton, J. N.; Leyde, K.; Li, A. K. Y.; Li, B.; Li, J.; Li, T. G. F.; Li, X.; Linde, F.; Linker, S. D.; Linley, J. N.; Littenberg, T. B.; Liu, J.; Liu, K.; Liu, X.; Llamas, F.; Llorens-Monteagudo, M.; Lo, R. K. L.; Lockwood, A.; London, L. T.; Longo, A.; Lopez, D.; Portilla, M. Lopez; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lott, T. P.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lucaccioni, J. F.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynam, J. E.; Macas, R.; MacInnis, M.; Macleod, D. M.; MacMillan, I. A. O.; Macquet, A.; Hernandez, I. Magaña; Magazzù, C.; Magee, R. M.; Maggiore, R.; Magnozzi, M.; Mahesh, S.; Majorana, E.; Makarem, C.; Maksimovic, I.; Maliakal, S.; Malik, A.; Man, N.; Mandic, V.; Mangano, V.; Mango, J. L.; Mansell, G. L.; Manske, M.; Mantovani, M.; Mapelli, M.; Marchesoni, F.; Marion, F.; Mark, Z.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsat, S.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinez, M.; Martinez, V. A.; Martinez, V.; Martinovic, K.; Martynov, D. V.; Marx, E. J.; Masalehdan, H.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Mateu-Lucena, M.; Matichard, F.; Matiushechkina, M.; Mavalvala, N.; McCann, J. J.; McCarthy, R.; McClelland, D. E.; McClincy, P. K.; McCormick, S.; McCuller, L.; McGhee, G. I.; McGuire, S. C.; McIsaac, C.; McIver, J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Mehmet, M.; Mehta, A. K.; Meijer, Q.; Melatos, A.; Melchor, D. A.; Mendell, G.; Menendez-Vazquez, A.; Menoni, C. S.; Mercer, R. A.; Mereni, L.; Merfeld, K.; Merilh, E. L.; Merritt, J. D.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Meylahn, F.; Mhaske, A.; Miani, A.; Miao, H.; Michaloliakos, I.; Michel, C.; Middleton, H.; Milano, L.; Miller, A.; Miller, A. L.; Miller, B.; Millhouse, M.; Mills, J. C.; Milotti, E.; Minazzoli, O.; Minenkov, Y.; Mir, Ll. M.; Miravet-Tenés, M.; Mishra, C.; Mishra, T.; Mistry, T.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Mo, Geoffrey; Moguel, E.; Mogushi, K.; Mohapatra, S. R. P.; Mohite, S. R.; Molina, I.; Molina-Ruiz, M.; Mondin, M.; Montani, M.; Moore, C. J.; Moraru, D.; Morawski, F.; More, A.; Moreno, C.; Moreno, G.; Morisaki, S.; Mours, B.; Mow-Lowry, C. M.; Mozzon, S.; Muciaccia, F.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, Soma; Mukherjee, Subroto; Mukherjee, Suvodip; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Murray, P. G.; Musenich, R.; Muusse, S.; Nadji, S. L.; Nagar, A.; Napolano, V.; Nardecchia, I.; Naticchioni, L.; Nayak, B.; Nayak, R. K.; Neil, B. F.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neubauer, P.; Neunzert, A.; Ng, K. Y.; Ng, S. W. S.; Nguyen, C.; Nguyen, P.; Nguyen, T.; Nichols, S. A.; Nissanke, S.; Nitoglia, E.; Nocera, F.; Norman, M.; North, C.; Nuttall, L. K.; Oberling, J.; O’Brien, B. D.; O’Dell, J.; Oelker, E.; Oganesyan, G.; Oh, J. J.; Oh, S. H.; Ohme, F.; Ohta, H.; Okada, M. A.; Olivetto, C.; Oram, R.; O’Reilly, B.; Ormiston, R. G.; Ormsby, N. D.; Ortega, L. F.; O’Shaughnessy, R.; O’Shea, E.; Ossokine, S.; Osthelder, C.; Ottaway, D. J.; Overmier, H.; Pace, A. E.; Pagano, G.; Page, M. A.; Pagliaroli, G.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pan, H.; Panda, P. K.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Panther, F. H.; Paoletti, F.; Paoli, A.; Paolone, A.; Park, H.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, M.; Pathak, M.; Patricelli, B.; Patron, A. S.; Paul, S.; Payne, E.; Pedraza, M.; Pegoraro, M.; Pele, A.; Penn, S.; Perego, A.; Pereira, A.; Pereira, T.; Perez, C. J.; Périgois, C.; Perkins, C. C.; Perreca, A.; Perriès, S.; Petermann, J.; Petterson, D.; Pfeiffer, H. P.; Pham, K. A.; Phukon, K. S.; Piccinni, O. J.; Pichot, M.; Piendibene, M.; Piergiovanni, F.; Pierini, L.; Pierro, V.; Pillant, G.; Pillas, M.; Pilo, F.; Pinard, L.; Pinto, I. M.; Pinto, M.; Piotrzkowski, K.; Pirello, M.; Pitkin, M. D.; Placidi, E.; Planas, L.; Plastino, W.; Pluchar, C.; Poggiani, R.; Polini, E.; Pong, D. Y. T.; Ponrathnam, S.; Popolizio, P.; Porter, E. K.; Poulton, R.; Powell, J.; Pracchia, M.; Pradier, T.; Prajapati, A. K.; Prasai, K.; Prasanna, R.; Pratten, G.; Principe, M.; Prodi, G. A.; Prokhorov, L.; Prosposito, P.; Prudenzi, L.; Puecher, A.; Punturo, M.; Puosi, F.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Raaijmakers, G.; Radkins, H.; Radulesco, N.; Raffai, P.; Rail, S. X.; Raja, S.; Rajan, C.; Ramirez, K. E.; Ramirez, T. D.; Ramos-Buades, A.; Rana, J.; Rapagnani, P.; Rapol, U. D.; Ray, A.; Raymond, V.; Raza, N.; Razzano, M.; Read, J.; Rees, L. A.; Regimbau, T.; Rei, L.; Reid, S.; Reid, S. W.; Reitze, D. H.; Relton, P.; Renzini, A.; Rettegno, P.; Rezac, M.; Ricci, F.; Richards, D.; Richardson, J. W.; Richardson, L.; Riemenschneider, G.; Riles, K.; Rinaldi, S.; Rink, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rodriguez, S.; Rolland, L.; Rollins, J. G.; Romanelli, M.; Romano, R.; Romel, C. L.; Romero-Rodríguez, A.; Romero-Shaw, I. M.; Romie, J. H.; Ronchini, S.; Rosa, L.; Rose, C. A.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rowlinson, S. J.; Roy, S.; Roy, Santosh; Roy, Soumen; Rozza, D.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadiq, J.; Sakellariadou, M.; Salafia, O. S.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sanchez, E. J.; Sanchez, J. H.; Sanchez, L. E.; Sanchis-Gual, N.; Sanders, J. R.; Sanuy, A.; Saravanan, T. R.; Sarin, N.; Sassolas, B.; Satari, H.; Sathyaprakash, B. S.; Sauter, O.; Savage, R. L.; Sawant, D.; Sawant, H. L.; Sayah, S.; Schaetzl, D.; Scheel, M.; Scheuer, J.; Schiworski, M.; Schmidt, P.; Schmidt, S.; Schnabel, R.; Schneewind, M.; Schofield, R. M. S.; Schönbeck, A.; Schulte, B. W.; Schutz, B. F.; Schwartz, E.; Scott, J.; Scott, S. M.; Seglar-Arroyo, M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Seo, E. G.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaffer, T.; Shahriar, M. S.; Shams, B.; Sharma, A.; Sharma, P.; Shawhan, P.; Shcheblanov, N. S.; Shikauchi, M.; Shoemaker, D. H.; Shoemaker, D. M.; ShyamSundar, S.; Sieniawska, M.; Sigg, D.; Singer, L. P.; Singh, D.; Singh, N.; Singha, A.; Sintes, A. M.; Sipala, V.; Skliris, V.; Slagmolen, B. J. J.; Slaven-Blair, T. J.; Smetana, J.; Smith, J. R.; Smith, R. J. E.; Soldateschi, J.; Somala, S. N.; Son, E. J.; Soni, K.; Soni, S.; Sordini, V.; Sorrentino, F.; Sorrentino, N.; Soulard, R.; Souradeep, T.; Sowell, E.; Spagnuolo, V.; Spencer, A. P.; Spera, M.; Srinivasan, R.; Srivastava, A. K.; Srivastava, V.; Staats, K.; Stachie, C.; Steer, D. A.; Steinlechner, J.; Steinlechner, S.; Stops, D. J.; Stover, M.; Strain, K. A.; Strang, L. C.; Stratta, G.; Strunk, A.; Sturani, R.; Stuver, A. L.; Sudhagar, S.; Sudhir, V.; Suh, H. G.; Summerscales, T. Z.; Sun, H.; Sun, L.; Sunil, S.; Sur, A.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Szewczyk, P.; Tacca, M.; Tait, S. C.; Talbot, C. J.; Talbot, C.; Tanasijczuk, A. J.; Tanner, D. B.; Tao, D.; Tao, L.; Martín, E. N. Tapia San; Taranto, C.; Tasson, J. D.; Tenorio, R.; Terhune, J. E.; Terkowski, L.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thompson, J. E.; Thondapu, S. R.; Thorne, K. A.; Thrane, E.; Tiwari, Shubhanshu; Tiwari, Srishti; Tiwari, V.; Toivonen, A. M.; Toland, K.; Tolley, A. E.; Tonelli, M.; Torres-Forné, A.; Torrie, C. I.; e Melo, I. Tosta; Töyrä, D.; Trapananti, A.; Travasso, F.; Traylor, G.; Trevor, M.; Tringali, M. C.; Tripathee, A.; Troiano, L.; Trovato, A.; Trozzo, L.; Trudeau, R. J.; Tsai, D. S.; Tsai, D.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tsutsui, T.; Turbang, K.; Turconi, M.; Ubhi, A. S.; Udall, R. P.; Ueno, K.; Unnikrishnan, C. S.; Urban, A. L.; Utina, A.; Vahlbruch, H.; Vajente, G.; Vajpeyi, A.; Valdes, G.; Valentini, M.; Valsan, V.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; Vanosky, J.; van Remortel, N.; Vardaro, M.; Vargas, A. F.; Varma, V.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venneberg, J.; Venugopalan, G.; Verkindt, D.; Verma, P.; Verma, Y.; Veske, D.; Vetrano, F.; Vicere', Andrea; Vidyant, S.; Viets, A. D.; Vijaykumar, A.; Villa-Ortega, V.; Vinet, J.-Y.; Virtuoso, A.; Vitale, S.; Vo, T.; Vocca, H.; von Reis, E. R. G.; von Wrangel, J. S. A.; Vorvick, C.; Vyatchanin, S. P.; Wade, L. E.; Wade, M.; Wagner, K. J.; Walet, R. C.; Walker, M.; Wallace, G. S.; Wallace, L.; Walsh, S.; Wang, J. Z.; Wang, W. H.; Ward, R. L.; Warner, J.; Was, M.; Washington, N. Y.; Watchi, J.; Weaver, B.; Webster, S. A.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Weldon, G.; Weller, C. M.; Wellmann, F.; Wen, L.; Weßels, P.; Wette, K.; Whelan, J. T.; White, D. D.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, M. J.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wilson, D. J.; Winkler, W.; Wipf, C. C.; Wlodarczyk, T.; Woan, G.; Woehler, J.; Wofford, J. K.; Wong, I. C. F.; Wu, D. S.; Wysocki, D. M.; Xiao, L.; Yamamoto, H.; Yang, F. W.; Yang, L.; Yang, Yang; Yang, Z.; Yap, M. J.; Yeeles, D. W.; Yelikar, A. B.; Ying, M.; Yoo, J.; Yu, Hang; Yu, Haocun; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, J.; Zhang, L.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhao, G.; Zhao, Yue; Zhou, R.; Zhou, Z.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.Abbott, R.; Abbott, T.  D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.  X.; Adya, V.  B.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O.  D.; Aiello, L.; Ain, A.; Ajith, P.; Albanesi, S.; Allocca, A.; Altin, P.  A.; Amato, A.; Anand, C.; Anand, S.; Ananyeva, A.; Anderson, S.  B.; Anderson, W.  G.; Andrade, T.; Andres, N.; Andrić, T.; Angelova, S.  V.; Ansoldi, S.; Antelis, J.  M.; Antier, S.; Appert, S.; Arai, K.; Araya, M.  C.; Areeda, J.  S.; Arène, M.; Arnaud, N.; Aronson, S.  M.; Arun, K.  G.; Asali, Y.; Ashton, G.; Assiduo, M.; Aston, S.  M.; Astone, P.; Aubin, F.; Austin, C.; Babak, S.; Badaracco, F.; Bader, M.  K.  M.; Badger, C.; Bae, S.; Baer, A.  M.; Bagnasco, S.; Bai, Y.; Baird, J.; Ball, M.; Ballardin, G.; Ballmer, S.  W.; Balsamo, A.; Baltus, G.; Banagiri, S.; Bankar, D.; Barayoga, J.  C.; Barbieri, C.; Barish, B.  C.; Barker, D.; Barneo, P.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M.  A.; Bartos, I.; Bassiri, R.; Basti, A.; Bawaj, M.; Bayley, J.  C.; Baylor, A.  C.; Bazzan, M.; Bécsy, B.; Bedakihale, V.  M.; Bejger, M.; Belahcene, I.; Benedetto, V.; Beniwal, D.; Bennett, T.  F.; Bentley, J.  D.; Benyaala, M.; Bergamin, F.; Berger, B.  K.; Bernuzzi, S.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beveridge, D.; Bhandare, R.; Bhardwaj, U.; Bhattacharjee, D.; Bhaumik, S.; Bilenko, I.  A.; Billingsley, G.; Bini, S.; Birney, R.; Birnholtz, O.; Biscans, S.; Bischi, M.; Biscoveanu, S.; Bisht, A.; Biswas, B.; Bitossi,
    • …
    corecore