178 research outputs found

    Post-operative epiphora following the transcutaneous medial canthal incision

    Get PDF
    Purpose The safety profile of the transcutaneous medial canthal incision for access to the medial orbit is assessed with a focus on the risk of post-operative iatrogenic epiphora. Methods A retrospective chart review of patients undergoing medial orbitotomy via the transcutaneous medial canthal incision was performed. Patients with a minimum of 3 months of follow-up were included and post-operative complications were assessed and characterized. Results One-hundred-fifty patients were included in the study. A total of 4 complications were identified, including one each of the following: nasolacrimal duct obstruction, hypertrophic scar, suture granuloma and soft tissue infection. Only the nasolacrimal duct obstruction required surgical intervention. Discussion Access to the medial orbit has been achieved through a variety of approaches, each with their own benefits and risk profile. The transcaruncular approach has increased in usage as a means to avoid a visible cutaneous scar and decrease the risk of iatrogenic epiphora, however, there are specific patients who may have relative contraindications to this approach. The current study demonstrates the low risk profile of the transcutaneous medial canthal incision, specifically the minimal risk of iatrogenic damage to the nasolacrimal outflow system. This approach is another useful tool which orbit surgeons should be familiar with to offer as an option to patients requiring medial orbitotomy

    Nitrogen-induced terrestrial eutrophication: cascading effects and impacts on ecosystem services

    Get PDF
    Human activity has significantly increased the deposition of nitrogen (N) on terrestrial ecosystems over pre-industrial levels leading to a multitude of effects including losses of biodiversity, changes in ecosystem functioning, and impacts on human well-being. It is challenging to explicitly link the level of deposition on an ecosystem to the cascade of ecological effects triggered and ecosystem services affected, because of the multitude of possible pathways in the N cascade. To address this challenge, we report on the activities of an expert workshop to synthesize information on N-induced terrestrial eutrophication from the published literature and to link critical load exceedances with human beneficiaries by using the STressor–Ecological Production function–final ecosystem Services Framework and the Final Ecosystem Goods and Services Classification System (FEGS-CS). We found 21 N critical loads were triggered by N deposition (ranging from 2 to 39 kg N·ha−1·yr−1), which cascaded to distinct beneficiary types through 582 individual pathways in the five ecoregions examined (Eastern Temperate Forests, Marine West Coast Forests, Northwestern Forested Mountains, North American Deserts, Mediterranean California). These exceedances ultimately affected 66 FEGS across a range of final ecosystem service categories (21 categories, e.g., changes in timber production, fire regimes, and native plant and animal communities) and 198 regional human beneficiaries of different types. Several different biological indicators were triggered in different ecosystems, including grasses and/or forbs (33% of all pathways), mycorrhizal communities (22%), tree species (21%), and lichen biodiversity (11%). Ecoregions with higher deposition rates for longer periods tended to have more numerous and varied ecological impacts (e.g., Eastern Temperate Forests, eight biological indicators) as opposed to other ecoregions (e.g., North American Deserts and Marine West Coast Forests each with one biological indicator). Nonetheless, although ecoregions differed by ecological effects from terrestrial eutrophication, the number of FEGS and beneficiaries impacted was similar across ecoregions. We found that terrestrial eutrophication affected all ecosystems examined, demonstrating the widespread nature of terrestrial eutrophication nationally. These results highlight which people and ecosystems are most affected according to present knowledge, and identify key uncertainties and knowledge gaps to be filled by future research

    Tethering Telomeric Double- and Single-stranded DNA-binding Proteins Inhibits Telomere Elongation

    Get PDF
    Mammalian telomeres are composed of G-rich repetitive double-stranded (ds) DNA with a 3' single-stranded (ss) overhang and associated proteins that together maintain chromosome end stability. Complete replication of telomeric DNA requires de novo elongation of the ssDNA by the enzyme telomerase, with telomeric proteins playing a key role in regulating telomerase-mediated telomere replication. In regards to the protein component of mammalian telomeres, TRF1 and TRF2 bind to the dsDNA of telomeres, whereas POT1 binds to the ssDNA portion. These three proteins are linked through either direct interactions or by the proteins TIN2 and TPP1. To determine the biological consequence of connecting telomeric dsDNA to ssDNA through a multiprotein assembly, we compared the effect of expressing TRF1 and POT1 in trans versus in cis in the form of a fusion of these two proteins, on telomere length in telomerase-positive cells. When expressed in trans these two proteins induced extensive telomere elongation. Fusing TRF1 to POT1 abrogated this effect, inducing mild telomere shortening, and generated looped DNA structures, as assessed by electron microscopy, consistent with the protein forming a complex with dsDNA and ssDNA. We speculate that such a protein bridge between dsDNA and ssDNA may inhibit telomerase access, promoting telomere shortening

    Photodetachment study of the 1s3s4s ^4S resonance in He^-

    Get PDF
    A Feshbach resonance associated with the 1s3s4s ^{4}S state of He^{-} has been observed in the He(1s2s ^{3}S) + e^- (\epsilon s) partial photodetachment cross section. The residual He(1s2s ^{3}S) atoms were resonantly ionized and the resulting He^+ ions were detected in the presence of a small background. A collinear laser-ion beam apparatus was used to attain both high resolution and sensitivity. We measured a resonance energy E_r = 2.959 255(7) eV and a width \Gamma = 0.19(3) meV, in agreement with a recent calculation.Comment: LaTeX article, 4 pages, 3 figures, 21 reference

    Outplayed: Regaining Strategic Initiative in the Gray Zone, A Report Sponsored by the Army Capabilities Integration Center in Coordination with Joint Staff J-39/Strategic Multi-Layer Assessment Branch

    Get PDF
    U.S. competitors pursuing meaningful revision or rejection of the current U.S.-led status quo are employing a host of hybrid methods to advance and secure interests contrary to those of the United States. These challengers employ unique combinations of influence, intimidation, coercion, and aggression to incrementally crowd out effective resistance, establish local or regional advantage, and manipulate risk perceptions in their favor. So far, the United States has not come up with a coherent countervailing approach. It is in this “gray zone”—the awkward and uncomfortable space between traditional conceptions of war and peace—where the United States and its defense enterprise face systemic challenges to U.S. position and authority. Gray zone competition and conflict present fundamental challenges to U.S. and partner security and, consequently, should be important pacers for U.S. defense strategy.https://press.armywarcollege.edu/monographs/1924/thumbnail.jp

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019 A Systematic Analysis for the Global Burden of Disease Study 2019

    Get PDF
    Importance The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. Objective To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. Evidence Review The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). Findings In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. Conclusions and Relevance The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr BĂ€rnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a CiĂȘncia e Tecnologia, IP under the Norma TransitĂłria grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de InvestigaciĂłn, which is supported by Panama’s SecretarĂ­a Nacional de Ciencia, TecnologĂ­a e InnovaciĂłn. Dr Loureiro was supported by national funds through Fundação para a CiĂȘncia e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de NĂ­vel Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042.publishedVersio

    Chimpanzee APOBEC3 proteins deter SIVs from any monkey business

    Get PDF
    Cross-species transmissions of viruses from animals to humans are at the origin of major human pathogenic viruses. While the role of ecological and epidemiological factors in the emergence of new pathogens is well documented, the importance of host factors is often unknown. Chimpanzees are the closest relatives of humans and the animal reservoir at the origin of the human AIDS pandemic. However, despite being regularly exposed to monkey lentiviruses through hunting, chimpanzees are naturally infected by only a single simian immunodeficiency virus, SIVcpz. Here, we asked why chimpanzees appear to be protected against the successful emergence of other SIVs. In particular, we investigated the role of the chimpanzee APOBEC3 genes in providing a barrier to infection by most monkey lentiviruses. We found that most SIV Vifs, including Vif from SIVwrc infecting western-red colobus, the chimpanzee's main monkey prey in West Africa, could not antagonize chimpanzee APOBEC3G. Moreover, chimpanzee APOBEC3D, as well as APOBEC3F and APOBEC3H, provided additional protection against SIV Vif antagonism. Consequently, lentiviral replication in primary chimpanzee CD4(+) T cells was dependent on the presence of a lentiviral vif gene that could antagonize chimpanzee APOBEC3s. Finally, by identifying and functionally characterizing several APOBEC3 gene polymorphisms in both common chimpanzees and bonobos, we found that these ape populations encode APOBEC3 proteins that are uniformly resistant to antagonism by monkey lentiviruses

    Mass spectrometry protein expression profiles in colorectal cancer tissue associated with clinico-pathological features of disease

    Get PDF
    Background: Studies of several tumour types have shown that expression profiling of cellular protein extracted from surgical tissue specimens by direct mass spectrometry analysis can accurately discriminate tumour from normal tissue and in some cases can sub-classify disease. We have evaluated the potential value of this approach to classify various clinico-pathological features in colorectal cancer by employing matrix-assisted laser desorption ionisation time of-flight-mass spectrometry (MALDI-TOF MS). Methods: Protein extracts from 31 tumour and 33 normal mucosa specimens were purified, subjected to MALDI-Tof MS and then analysed using the `GenePattern' suite of computational tools (Broad Institute, MIT, USA). Comparative Gene Marker Selection with either a t-test or a signal-to-noise ratio (SNR) test statistic was used to identify and rank differentially expressed marker peaks. The k-nearest neighbours algorithm was used to build classification models either using separate training and test datasets or else by using an iterative, `leave-one-out' cross-validation method. Results: 73 protein peaks in the mass range 1800-16000Da were differentially expressed in tumour verses adjacent normal mucosa tissue (P <= 0.01, false discovery rate <= 0.05). Unsupervised hierarchical cluster analysis classified most tumour and normal mucosa into distinct cluster groups. Supervised prediction correctly classified the tumour/normal mucosa status of specimens in an independent test spectra dataset with 100\% sensitivity and specificity (95\% confidence interval: 67.9-99.2\%). Supervised prediction using `leave-one-out' cross validation algorithms for tumour spectra correctly classified 10/13 poorly differentiated and 16/18 well/moderately differentiated tumours (P = < 0.001; receiver-operator characteristics - ROC - error, 0.171); disease recurrence was correctly predicted in 5/6 cases and disease-free survival (median follow-up time, 25 months) was correctly predicted in 22/23 cases (P = < 0.001; ROC error, 0.105). A similar analysis of normal mucosa spectra correctly predicted 11/14 patients with, and 15/19 patients without lymph node involvement (P = 0.001; ROC error, 0.212). Conclusions: Protein expression profiling of surgically resected CRC tissue extracts by MALDI-TOF MS has potential value in studies aimed at improved molecular classification of this disease. Further studies, with longer follow-up times and larger patient cohorts, that would permit independent validation of supervised classification models, would be required to confirm the predictive value of tumour spectra for disease recurrence/patient survival
    • 

    corecore