771 research outputs found

    Studies on the mechanism of CCl4-induced polyribosomal damage

    Get PDF
    https://nsuworks.nova.edu/nsudigital_harrison/3886/thumbnail.jp

    Possible role of membrane gamma-glutamyltransferase activity in the facilitation of transferrin-dependent and -independent iron uptake by cancer cells.

    Get PDF
    BACKGROUND: The molecular mechanisms by which iron is physiologically transported trough the cellular membranes are still only partially understood. Several studies indicate that a reduction step of ferric iron to ferrous is necessary, both in the case of transferrin-mediated and transferrin-independent iron uptake. Recent studies from our laboratory described gamma-glutamyltransferase activity (GGT) as a factor capable to effect iron reduction in the cell microenvironment. GGT is located on the outer aspect of plasma membrane of most cell types, and is often expressed at high levels in malignant tumors and their metastases. The present study was aimed at verifying the possibility that GGT-mediated iron reduction may participate in the process of cellular iron uptake. RESULTS: Four distinct human tumor cell lines, exhibiting different levels of GGT activity, were studied. The uptake of transferrin-bound iron was investigated by using (55)Fe-loaded transferrin, as well as by monitoring fluorimetrically the intracellular iron levels in calcein-preloaded cells. Transferrin-independent iron uptake was investigated using (55)Fe complexed by nitrilotriacetic acid ((55)Fe-NTA complex). The stimulation of GGT activity, by administration to cells of the substrates glutathione and glycyl-glycine, was generally reflected in a facilitation of transferrin-bound iron uptake. The extent of such facilitation was correlated with the intrinsic levels of the enzyme present in each cell line. Accordingly, inhibition of GGT activity by means of two independent inhibitors, acivicin and serine/boric acid complex, resulted in a decreased uptake of transferrin-bound iron. With Fe-NTA complex, the inhibitory effect – but not the stimulatory one – was also observed. CONCLUSION: It is concluded that membrane GGT can represent a facilitating factor in iron uptake by GGT-expressing cancer cells, thus providing them with a selective growth advantage over clones that do not possess the enzyme

    FREE RADICALS, OXIDATIVE STRESS AND ANTIOXIDANTS

    Get PDF
    n/

    La sfida delle nuove direttive europee in materia di appalti e concessioni

    Get PDF
    Sommario: 1. La prospettiva quasi salvifica di una nuova era nelle contrattazioni pubbliche – 2. Il “realismo” di Halit il regolatore – 3. La (assorbente) prospettiva pan-penalistica – 4. L‟inquisizione sui requisiti e la giurisprudenza sulla escussione – 5. Una differente prospettiva: l‟attrito della natura delle cose nel corso dell‟operazione economica – 6. Le opportunità comunitarie per l‟approdo ad un modello negoziale operativo e flessibile – 7. Conclusioni: come uscire dal dilemma del prigioniero

    Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity

    Get PDF
    AbstractIncubation of glutathione (GSH) depleted mouse erythrocytes with the oxidants phenylhydrazine, acrolein, divicine and isouramil resulted in the release of free iron and in lipid peroxidation and hemolysis. The addition of the flavonoid quercetin, which chelates iron and penetrates erythrocytes, resulted in remarkable protection against lipid peroxidation and hemolysis. The protection seems to be due to intracellular chelation of iron, since a semi-stoichiometric ratio between released iron and the amount of quercetin necessary to prevent lipid peroxidation and hemolysis was found. Incubation of GSH depleted human erythrocytes with divicine and isouramil did not induce lipid peroxidation and hemolysis in spite of a substantial release of iron. However, divicine and isouramil produced alterations of membrane proteins, such as spectrin and band 3, as well as formation of senescent cell antigen. The addition of quercetin prevented these alterations

    AN IN VIVO MODEL OF HYPERACUTE REJECTION: CHARACTERIZATION AND EVALUATION OF THE EFFECT OF TRANSGENIC HUMAN COMPLEMENT INHIBITORS

    Get PDF
    Hyperacute rejection (HAR) occurring after transplantation within phylogenetically distant species is a severe reaction triggered by preexisting xenoreactive antibodies and complement activation, leading to the destruction of the donor organ. Expression of human complement inhibitors in transgenic pig organs prolongs the survival of xenograft in experimental models. Moreover, the extent of protection from hyperacute rejection is dependent on the level and site of expression of the transgenic molecules and, probably, on the combination of different molecules. In this regard a small animal model to test the efficacy of expression vectors and different human molecules could be very advantageous. A murine model developed in our laboratory was characterized by measurement of several parameters characteristic of HAR in the livers of control and transgenic mice expressing transgenic human DAF (CD55) or MCP (CD46) at the end of 2 h of perfusion with human plasma and after 1 day. The parameters studied were heamatological values of hepatic functions (GOT and GPT), induction of pro-inflammatory molecules and histopathological evaluation. Cytokines (IL-1 alpha, IL-1 beta, IL-6) induction and exposure of P-selectin on the endothelial cell surface, was only observed in control animals after 2 h of perfusion, as an early event. GOT and GPT values increase drammatically after 2 h perfusion and 1 day after the treatment according to the histopathological observation of liver damage. On the contrary, the livers of hDAF or hMCP transgenic mice, under the same treatment were significantly protected although the extent of this protection is dependent on the level of expression of transgenic human molecules

    Noninvasive in vivo magnetic resonance measures of glutathione synthesis in human and rat liver as an oxidative stress biomarker.

    Get PDF
    UNLABELLED: Oxidative stress (OS) plays a central role in the progression of liver disease and in damage to liver by toxic xenobiotics. We have developed methods for noninvasive assessment of hepatic OS defenses by measuring flux through the glutathione (GSH) synthesis pathway. (13) C-labeled GSH is endogenously produced and detected by in vivo magnetic resonance after administration of [2-(13) C]-glycine. We report on a successful first-ever human demonstration of this approach as well as preclinical studies demonstrating perturbed GSH metabolism in models of acute and chronic OS. Human studies employed oral administration of [2-(13) C]-glycine and (13) C spectroscopy on a 3T clinical magnetic resonance (MR) imaging scanner and demonstrated detection and quantification of endogenously produced (13) C-GSH after labeled glycine ingestion. Plasma analysis demonstrated that glycine (13) C fractional enrichment achieved steady state during the 6-hour ingestion period. Mean rate of synthesis of hepatic (13) C-labeled GSH was 0.32 ± 0.18 mmole/kg/hour. Preclinical models of acute OS and nonalcoholic steatohepatitis (NASH) comprised CCl4 -treated and high-fat, high-carbohydrate diet-fed Sprague-Dawley rats, respectively, using intravenous administration of [2-(13) C]-glycine and observation of (13) C-label metabolism on a 7T preclinical MR system. Preclinical studies demonstrated a 54% elevation of GSH content and a 31% increase in flux through the GSH synthesis pathway at 12 hours after acute insult caused by CCl4 administration, as well as a 23% decrease in GSH content and evidence of early steatohepatitis in the model of NASH. CONCLUSION: Our data demonstrate in vivo (13) C-labeling and detection of GSH as a biomarker of tissue OS defenses, detecting chronic and acute OS insults. The methods are applicable to clinical research studies of hepatic OS in disease states over time as well as monitoring effects of therapeutic interventions
    • …
    corecore