275 research outputs found

    Effect of Benzoic Acids on Barite and Calcite Precipitation

    Get PDF
    The effect of various benzoic acids on the precipitation of barite (BaSO4) and calcite (CaCO3) was investigated. The acids varied in the number of carboxylate groups, from dibenzoic acids (phthalic, isophthalic, and terephthalic) through to the hexabenzoic acid (mellitic acid). It was found that the stereochemistry of the dibenzoic acids was important, as was the pH of the solution (trimesic acid was used as a test case and showed that greatest inhibition was achieved with all carboxylate groups deprotonated). Interestingly, for both the calcite and barite systems, mellitic acid was found to be both a potent inhibitor and a significant crystal growth modifier. In the case of barite, the presence of mellitic acid produced nanoparticles that agglomerated. The nanoparticles were found to be 20 nm in size from X-ray diffraction (XRD) line width analysis and 20-50 nm from transmission electron microscopy (TEM). Humic acid was also tested and found to form bundled fibers of barium sulfate

    Optimising calcium phosphate cement formulations to widen clinical applications

    Get PDF
    The demand for reconstructive orthopaedic implants continues expanding at a reasonable pace as the incidence of fracture injuries and infectious diseases rises. There has been an increase in the clinical need for more effective synthetic bone graft materials due to the drawbacks of autogenous grafts. Since the 1980’s calcium phosphate cements (CPC’s) have attracted a great deal of interest due to their chemical similarities to natural bone; chemical, physical and mechanical characteristics have been investigated and manipulated to maximise osteoconductivity and osteointegration of these CPC’s since the start of their commercialisation. Here in this thesis, a series of investigation are complied to demonstrate novel and inventive approaches to expand the application of CPC’s: (1) limiting the liquid phase in the setting reaction of a brushite cement to produce monetite (dehydrated brushite) based cement, with increased solubility to overcome the problems faced by long term stability of hydroxyapatite (HA) cements; (2) manipulating the cement formulation to produce a cement that can set on a change in temperature, upon implantation, increasing handling time during surgeries; (3) incorporating therapeutic molecules to eliminate secondary surgeries following infectious diseases; (4) to enhance osteointegration of CPC’s by synchronising the degradation to natural bone formation. Results exhibit compressive strength appropriate for the application of cranioplasty; long term ageing studies demonstrates that the novel cement formulations do not hydrolyse to HA, eliminating the risk of catastrophic brittle failure that is commonly associated with CPC’s.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Exploring Aboriginal People\u27s connection to country to strengthen human-nature theoretical perspectives

    Full text link
    Purpose Aboriginal people across Australia have diverse practices, beliefs and knowledges based on thousands of generations of managing and protecting their lands (Country). The intimate relationship Aboriginal people have with their Country is explored in this chapter because such knowledge is important for building insight into the relationship between social and ecological systems. Often in research Aboriginal views have been marginalised from discussions focused on their lands to the detriment of ecosystems and human health. This chapter aims to understand if such marginalisation is evident in Western human–nature relationship discourses.Approach This chapter provides a critical literature review which examines whether Aboriginal people’s diverse understanding of their ecosystems have been incorporated into human–nature theories using the biophilia hypothesis as a starting point. Other concepts explored include solastalgia, topophilia and place.Findings Critiques of these terminologies in the context of Aboriginal people’s connection to Country are limited but such incorporation is viewed in the chapter as a possible mechanism for better understanding human’s connection to nature. The review identified that Aboriginal people’s relationship to Country seems to be underrepresented in the human–nature theory literature.Value This chapter emphasises that the integration of Aboriginal perspectives into research, ecological management and policy can provide better insight into the interrelationships between social and ecological systems

    Integrated mutation, copy number and expression profiling in resectable non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to identify critical genes involved in non-small cell lung cancer (NSCLC) pathogenesis that may lead to a more complete understanding of this disease and identify novel molecular targets for use in the development of more effective therapies.</p> <p>Methods</p> <p>Both transcriptional and genomic profiling were performed on 69 resected NSCLC specimens and results correlated with mutational analyses and clinical data to identify genetic alterations associated with groups of interest.</p> <p>Results</p> <p>Combined analyses identified specific patterns of genetic alteration associated with adenocarcinoma vs. squamous differentiation; <it>KRAS </it>mutation; <it>TP53 </it>mutation, metastatic potential and disease recurrence and survival. Amplification of 3q was associated with mutations in <it>TP53 </it>in adenocarcinoma. A prognostic signature for disease recurrence, reflecting <it>KRAS </it>pathway activation, was validated in an independent test set.</p> <p>Conclusions</p> <p>These results may provide the first steps in identifying new predictive biomarkers and targets for novel therapies, thus improving outcomes for patients with this deadly disease.</p

    The Rts1 Regulatory Subunit of Protein Phosphatase 2A Is Required for Control of G1 Cyclin Transcription and Nutrient Modulation of Cell Size

    Get PDF
    The key molecular event that marks entry into the cell cycle is transcription of G1 cyclins, which bind and activate cyclin-dependent kinases. In yeast cells, initiation of G1 cyclin transcription is linked to achievement of a critical cell size, which contributes to cell-size homeostasis. The critical cell size is modulated by nutrients, such that cells growing in poor nutrients are smaller than cells growing in rich nutrients. Nutrient modulation of cell size does not work through known critical regulators of G1 cyclin transcription and is therefore thought to work through a distinct pathway. Here, we report that Rts1, a highly conserved regulatory subunit of protein phosphatase 2A (PP2A), is required for normal control of G1 cyclin transcription. Loss of Rts1 caused delayed initiation of bud growth and delayed and reduced accumulation of G1 cyclins. Expression of the G1 cyclin CLN2 from an inducible promoter rescued the delayed bud growth in rts1Δ cells, indicating that Rts1 acts at the level of transcription. Moreover, loss of Rts1 caused altered regulation of Swi6, a key component of the SBF transcription factor that controls G1 cyclin transcription. Epistasis analysis revealed that Rts1 does not work solely through several known critical upstream regulators of G1 cyclin transcription. Cells lacking Rts1 failed to undergo nutrient modulation of cell size. Together, these observations demonstrate that Rts1 is a key player in pathways that link nutrient availability, cell size, and G1 cyclin transcription. Since Rts1 is highly conserved, it may function in similar pathways in vertebrates

    Effects of MDM2, MDM4 and TP53 Codon 72 Polymorphisms on Cancer Risk in a Cohort Study of Carriers of TP53 Germline Mutations

    Get PDF
    Previous studies have shown that MDM2 SNP309 and p53 codon 72 have modifier effects on germline P53 mutations, but those studies relied on case-only studies with small sample sizes. The impact of MDM4 polymorphism on tumor onset in germline mutation carriers has not previously been studied.We analyzed 213 p53 germline mutation carriers including 168(78.9%) affected with cancer and 174 who had genotypic data. We analyzed time to first cancer using Kaplan-Meier and Cox proportional hazards methods, comparing risks according to polymorphism genotypes. For MDM2 SNP309, a significant difference of 9.0 years in the average age of cancer diagnosis was observed between GG/GT and TT carriers (18.6 versus 27.6 years, P = 0.0087). The hazards ratio was 1.58 (P = 0.03) comparing risks among individuals with GG/GT to risk among TT, but this effect was only significant in females (HR = 1.60, P = 0.02). Compared to other genotypes, P53 codon 72 PP homozygotes had a 2.24 times (P = 0.03) higher rate for time to develop cancer. We observed a multiplicative joint effect of MDM2 and p53 codon72 polymorphism on risk. The MDM4 polymorphism had no significant effects.Our results suggest that the MDM2 SNP309 G allele is associated with cancer risk in p53 germline mutation carriers and accelerates time to cancer onset with a pronounced effect in females. A multiplicative joint effect exists between the MDM2 SNP309 G allele and the p53 codon 72 G allele in the risk of cancer development. Our results further define cancer risk in carriers of germline p53 mutations

    Overexpressed TP73 induces apoptosis in medulloblastoma

    Get PDF
    Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth. Methods We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods. Results Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and sensitized them to cell death in response to chemotherapeutic agents. Conclusion These results indicate that primary medulloblastomas express significant levels of TP73 isoforms, and suggest that they can modulate the survival and genotoxic responsiveness of medulloblastomas cells
    • …
    corecore