1,059 research outputs found

    A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes

    Full text link
    Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light detection in atmospheric Cherenkov telescopes. In this paper, the design and commissioning of a 36-pixel G-APD prototype camera is presented. The data acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond time resolution has been achieved. Cosmic-ray induced air showers have been recorded using an imaging mirror setup, in a self-triggered mode. This is the first time that such measurements have been carried out with a complete G-APD camera.Comment: 9 pages with 11 figure

    Earth magnetic field effects on the cosmic electron flux as background for Cherenkov Telescopes at low energies

    Get PDF
    Cosmic ray electrons and positrons constitute an important component of the background for imaging atmospheric Cherenkov Telescope Systems with very low energy thresholds. As the primary energy of electrons and positrons decreases, their contribution to the background trigger rate dominates over protons, at least in terms of differential rates against actual energies. After event reconstruction, this contribution might become comparable to the proton background at energies of the order of few GeV. It is well known that the flux of low energy charged particles is suppressed by the Earth's magnetic field. This effect strongly depends on the geographical location, the direction of incidence of the charged particle and its mass. Therefore, the geomagnetic field can contribute to diminish the rate of the electrons and positrons detected by a given array of Cherenkov Telescopes. In this work we study the propagation of low energy primary electrons in the Earth's magnetic field by using the backtracking technique. We use a more realistic geomagnetic field model than the one used in previous calculations. We consider some sites relevant for new generations of imaging atmospheric Cherenkov Telescopes. We also study in detail the case of 5@5, a proposed low energy Cherenkov Telescope array.Comment: To appear in Astroparticle Physic

    A Site Evaluation Campaign for a Ground Based Atmospheric Cherenkov Telescope in Romania

    Full text link
    Around the world, several scientific projects share the interest of a global network of small Cherenkov telescopes for monitoring observations of the brightest blazars - the DWARF network. A small, ground based, imaging atmospheric Cherenkov telescope of last generation is intended to be installed and operated in Romania as a component of the DWARF network. To prepare the construction of the observatory, two support projects have been initiated. Within the framework of these projects, we have assessed a number of possible sites where to settle the observatory. In this paper we submit a brief report on the general characteristics of the best four sites selected after the local infrastructure, the nearby facilities and the social impact criteria have been applied.Comment: 6 pages, 5 Postscript figure

    FACT -- Operation of the First G-APD Cherenkov Telescope

    Full text link
    Since more than two years, the First G-APD Cherenkov Telescope (FACT) is operating successfully at the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD aka. MPPC or SiPM) for photon detection. Since properties as the gain of G-APDs depend on temperature and the applied voltage, a real-time feedback system has been developed and implemented. To correct for the change introduced by temperature, several sensors have been placed close to the photon detectors. Their read out is used to calculate a corresponding voltage offset. In addition to temperature changes, changing current introduces a voltage drop in the supporting resistor network. To correct changes in the voltage drop introduced by varying photon flux from the night-sky background, the current is measured and the voltage drop calculated. To check the stability of the G-APD properties, dark count spectra with high statistics have been taken under different environmental conditions and been evaluated. The maximum data rate delivered by the camera is about 240 MB/s. The recorded data, which can exceed 1 TB in a moonless night, is compressed in real-time with a proprietary loss-less algorithm. The performance is better than gzip by almost a factor of two in compression ratio and speed. In total, two to three CPU cores are needed for data taking. In parallel, a quick-look analysis of the recently recorded data is executed on a second machine. Its result is publicly available within a few minutes after the data were taken. [...]Comment: 19th IEEE Real-Time Conference, Nara, Japan (2014

    Calibration and performance of the photon sensor response of FACT -- The First G-APD Cherenkov telescope

    Full text link
    The First G-APD Cherenkov Telescope (FACT) is the first in-operation test of the performance of silicon photo detectors in Cherenkov Astronomy. For more than two years it is operated on La Palma, Canary Islands (Spain), for the purpose of long-term monitoring of astrophysical sources. For this, the performance of the photo detectors is crucial and therefore has been studied in great detail. Special care has been taken for their temperature and voltage dependence implementing a correction method to keep their properties stable. Several measurements have been carried out to monitor the performance. The measurements and their results are shown, demonstrating the stability of the gain below the percent level. The resulting stability of the whole system is discussed, nicely demonstrating that silicon photo detectors are perfectly suited for the usage in Cherenkov telescopes, especially for long-term monitoring purpose

    Hox-controlled reorganisation of intrasegmental patterning cues underlies Drosophila posterior spiracle organogenesis

    Get PDF
    10 páginas, 8 figuras. Material complementario del artículo esta disponible en http://dev.biologists.org/cgi/content/full/132/13/3093/DC1Hox proteins provide axial positional information and control segment morphology in development and evolution. Yet how they specify morphological traits that confer segment identity and how axial positional information interferes with intrasegmental patterning cues during organogenesis remain poorly understood. We have investigated the control of Drosophila posterior spiracle morphogenesis, a segment-specific structure that forms under Abdominal-B (AbdB) Hox control in the eighth abdominal segment (A8). We show that the Hedgehog (Hh), Wingless (Wg) and Epidermal Growth Factor Receptor (Egfr) pathways provide specific inputs for posterior spiracle morphogenesis and act in a genetic network made of multiple and rapidly evolving Hox/signalling interplays. A major function of AbdB during posterior spiracle organogenesis is to reset A8 intrasegmental patterning cues, first by reshaping wg and rhomboid expression patterns, then by reallocating the Hh signal and later by initiating de novo expression of the posterior compartment gene engrailed in anterior compartment cells. These changes in expression patterns confer axial specificity to otherwise reiteratively used segmental patterning cues, linking intrasegmental polarity and acquisition of segment identity.This work was supported by the `Centre National de la Recherche Scientifique' (CNRS), grants from `la Ligue Nationale Contre Le Cancer (équipe labellisée La Ligue)', `l'Association pour la Recherche contre le Cancer' (ARC), The Royal Society, The Welcome Trust, the `Minesterio de education y ciencia (BFU 2004 0 96) and ARC and EMBO long term fellowships to S. Merabet.Peer reviewe

    Discovery of VHE Gamma Radiation from IC443 with the MAGIC Telescope

    Get PDF
    We report the detection of a new source of very high energy (VHE, E_gamma >= 100GeV) gamma-ray emission located close to the Galactic Plane, MAGIC J0616+225, which is spatially coincident with SNR IC443. The observations were carried out with the MAGIC telescope in the periods December 2005 - January 2006 and December 2006 - January 2007. Here we present results from this source, leading to a VHE gamma-ray signal with a statistical significance of 5.7 sigma in the 2006/7 data and a measured differential gamma-ray flux consistent with a power law, described as dN_gamma/(dA dt dE) = (1.0 +/- 0.2)*10^(-11)(E/0.4 TeV)^(-3.1 +/- 0.3) cm^(-2)s^(-1)TeV^(-1). We briefly discuss the observational technique used and the procedure implemented for the data analysis. The results are put in the perspective of the multiwavelength emission and the molecular environment found in the region of IC443.Comment: Accepted by ApJ Letter

    Unfolding of differential energy spectra in the MAGIC experiment

    Get PDF
    The paper describes the different methods, used in the MAGIC experiment, to unfold experimental energy distributions of cosmic ray particles (gamma-rays). Questions and problems related to the unfolding are discussed. Various procedures are proposed which can help to make the unfolding robust and reliable. The different methods and procedures are implemented in the MAGIC software and are used in most of the analyses.Comment: Submitted to NIM

    MAGIC upper limits on the very high energy emission from GRBs

    Get PDF
    The fast repositioning system of the MAGIC Telescope has allowed during its first data cycle, between 2005 and the beginning of year 2006, observing nine different GRBs as possible sources of very high energy gammas. These observations were triggered by alerts from Swift, HETE-II, and Integral; they started as fast as possible after the alerts and lasted for several minutes, with an energy threshold varying between 80 and 200 GeV, depending upon the zenith angle of the burst. No evidence for gamma signals was found, and upper limits for the flux were derived for all events, using the standard analysis chain of MAGIC. For the bursts with measured redshift, the upper limits are compatible with a power law extrapolation, when the intrinsic fluxes are evaluated taking into account the attenuation due to the scattering in the Metagalactic Radiation Field (MRF).Comment: 25 pages, 9 figures, final version accepted by ApJ. Changet title to "MAGIC upped limits on the VERY high energy emission from GRBs", re-organized chapter with description of observation, removed non necessaries figures, added plot of effective area depending on zenith angle, added an appendix explaining the upper limit calculation, added some reference

    MAGIC observations of very high energy gamma-rays from HESS J1813-178

    Get PDF
    Recently, the HESS collaboration has reported the detection of gamma-ray emission above a few hundred GeV from eight new sources located close to the Galactic Plane. The source HESS J1813-178 has sparked particular interest, as subsequent radio observations imply an association with SNR G12.82-0.02. Triggered by the detection in VHE gamma-rays, a positionally coincident source has also been found in INTEGRAL and ASCA data. In this Letter we present MAGIC observations of HESS J1813-178, resulting in the detection of a differential gamma-ray flux consistent with a hard-slope power law, described as dN/(dA dt dE) = (3.3+/-0.5)*10^{-12} (E/TeV)^{-2.1+/-0.2} cm^(-2)s^(-1)TeV^(-1). We briefly discuss the observational technique used, the procedure implemented for the data analysis, and put this detection in the perspective of multifrequency observations.Comment: Accepted by ApJ Letter
    corecore