32 research outputs found

    Validation of a cationic polyacrylamide flocculant for the harvesting fresh and seawater microalgal biomass

    Full text link
    © 2019 Elsevier B.V. A simple, efficient, and fast settling flocculation technique to harvest microalgal biomass was demonstrated using a proprietary cationic polyacrylamide flocculant for a freshwater (Chlorella vulgaris) and a marine (Phaeodactylum tricornutum) microalgal culture at their mid-stationary growth phase. The optimal flocculant doses were 18.9 and 13.7 mg/g of dry algal biomass for C. vulgaris and P. tricornutum, respectively (equivalent to 7 g per m3 of algal culture for both species). The obtained optimal dose was well corroborated with changes in cell surface charge, and culture solution optical density and turbidity. At the optimal dose, charge neutralization of 64 and 86% was observed for C. vulgaris and P. tricornutum algal cells, respectively. Algae recovery was independent of the culture solution pH in the range of pH 6 to 9. Algal biomass recovery was achieved of 100 and 90% for C vulgaris and P. tricornutum respectively, and over 98% medium recovery was achievable by simple decanting

    Nodal dynamics, not degree distributions, determine the structural controllability of complex networks

    Get PDF
    Structural controllability has been proposed as an analytical framework for making predictions regarding the control of complex networks across myriad disciplines in the physical and life sciences (Liu et al., Nature:473(7346):167-173, 2011). Although the integration of control theory and network analysis is important, we argue that the application of the structural controllability framework to most if not all real-world networks leads to the conclusion that a single control input, applied to the power dominating set (PDS), is all that is needed for structural controllability. This result is consistent with the well-known fact that controllability and its dual observability are generic properties of systems. We argue that more important than issues of structural controllability are the questions of whether a system is almost uncontrollable, whether it is almost unobservable, and whether it possesses almost pole-zero cancellations.Comment: 1 Figures, 6 page

    Manufacturing flow line systems: a review of models and analytical results

    Get PDF
    The most important models and results of the manufacturing flow line literature are described. These include the major classes of models (asynchronous, synchronous, and continuous); the major features (blocking, processing times, failures and repairs); the major properties (conservation of flow, flow rate-idle time, reversibility, and others); and the relationships among different models. Exact and approximate methods for obtaining quantitative measures of performance are also reviewed. The exact methods are appropriate for small systems. The approximate methods, which are the only means available for large systems, are generally based on decomposition, and make use of the exact methods for small systems. Extensions are briefly discussed. Directions for future research are suggested.National Science Foundation (U.S.) (Grant DDM-8914277

    Proteomic and biophysical analyses reveal a metabolic shift in nitrogen deprived Nannochloropsis oculata

    Full text link
    © 2016. The microalga Nannochloropsis oculata is a model organism for understanding intracellular lipid production, with potential benefits to the biofuel, aquaculture and nutraceutical industries. It is well known that nitrogen deprivation increases lipid accumulation in microalgae but the underlying processes are not fully understood. In this study, detailed proteomic and biophysical analyses were used to describe mechanisms that regulate carbon partitioning in nitrogen-deplete N. oculata. The alga selectively up- or down-regulated proteins to shift its metabolic flux in order to compensate for deficits in nitrate availability. Under nitrogen deprivation, proteins involved in photosynthesis, carbon fixation and chlorophyll biosynthesis were all down-regulated, and this was reflected in reduced cell growth and chlorophyll content. Protein content was reduced 4.9-fold in nitrogen-deplete conditions while fatty acid methyl esters increased by 60%. Proteomic analysis revealed that organic carbon and nitrogen from the breakdown of proteins and pigments is channeled primarily into fatty acid synthesis. As a result, the fatty acid concentration increased and the fatty acid profile became more favorable for algal biodiesel production. This advancement in microalgal proteomic analysis will help inform lipid accumulation strategies and optimum cultivation conditions for overproduction of fatty acids in N. oculata

    A comprehensive analysis of an effective flocculation method for high quality microalgal biomass harvesting.

    Full text link
    Flocculation is a low-cost harvesting technique for microalgae biomass production, but flocculation efficiency is species dependent. In this study, we investigated the efficacy of two synthetic (polyacrylamide) and one natural (chitosan) flocculants against three algal species: the cyanobacterium Synechocystis sp., the freshwater Chlorella vulgaris, and the marine Phaeodactylum tricornutum at laboratory and pilot scales to evaluate harvesting efficiency, biomass integrity and media recycling. Growth phase affected the harvesting efficiency of the eukaryotic microalgae. The flocculation was optimal at stationary phase with high flocculation efficiency achieved using polyacrylamides at 24-36 mg/g dry weight. The effect of the flocculants on the harvested biomass was investigated. The flocculated Synechocystis sp. showed a higher proportion of compromised cells compared to C. vulgaris and P. tricornutum likely due to differences in cell walls composition. Compromised cells could lead to the release of valuable products into the surrounding growth media during flocculation. The residual culture media was recycled once with no impact on cell growth for all treatments and algal species. The flocculation technique was demonstrated at pilot-scale using 350 L microalgal suspension, showing an efficiency of 82-90% at a polyacrylamide dosage of 6.5-10 mg/L. This efficiency and the biomass quality are comparable to the laboratory-scale results. Overall, results indicate that polyacrylamide flocculants work on a wide range of species without the need for pre-treatment. The information generated in this study can contribute to making the microalgae industry more competitive

    Electricity and biomass production in a bacteria-Chlorella based microbial fuel cell treating wastewater

    Full text link
    © 2017 Elsevier B.V. The chlorophyte microalga Chlorella vulgaris has been exploited within bioindustrial settings to treat wastewater and produce oxygen at the cathode of microbial fuel cells (MFCs), thereby accumulating algal biomass and producing electricity. We aimed to couple these capacities by growing C. vulgaris at the cathode of MFCs in wastewater previously treated by anodic bacteria. The bioelectrochemical performance of the MFCs was investigated with different catholytes including phosphate buffer and anode effluent, either in the presence or absence of C. vulgaris. The power output fluctuated diurnally in the presence of the alga. The maximum power when C. vulgaris was present reached 34.2 ± 10.0 mW m−2, double that observed without the alga (15.6 ± 9.7 mW m−2), with a relaxation of 0.19 gL−1 d−1 chemical oxygen demand and 5 mg L−1 d−1 ammonium also removed. The microbial community associated with the algal biofilm included nitrogen-fixing (Rhizobiaceae), denitrifying (Pseudomonas stutzeri and Thauera sp., from Pseudomonadales and Rhodocyclales orders, respectively), and nitrate-reducing bacteria (Rheinheimera sp. from the Alteromonadales), all of which likely contributed to nitrogen cycling processes at the cathode. This paper highlights the importance of coupling microbial community screening to electrochemical and chemical analyses to better understand the processes involved in photo-cathode MFCs

    On Kalman Active Observers

    Get PDF
    Abstract The paper introduces the Active Observer (AOB) algorithm in the framework of Kalman filters. The AOB reformulates the Kalman filter to accomplish model-reference adaptive control based on: (1) A desired closed loop system. (2) An extra equation to estimate an equivalent disturbance referred to the system input. An active state is introduced to compensate unmodeled terms, providing a feedforward compensation action. (3) Stochastic design of the Kalman matrices. Stability analysis with model errors is discussed. An example of robot force control with an external and unknown nonlinear disturbance is presented (SISO system). Another example of model-matching control for steer-by-wire (SBW) vehicles with underactuated structure is discussed (MIMO system)
    corecore