27 research outputs found

    Specific prebiotics modulate gut microbiota and immune activation in HAART-naive HIV-infected adults: results of the “COPA” pilot randomized trial

    Get PDF
    Intestinal mucosal immune system is an early target for human immunodeficiency virus type 1 (HIV-1) infection, resulting in CD4+ T-cell depletion, deterioration of gut lining, and fecal microbiota composition. We evaluated the effects of a prebiotic oligosaccharide mixture in highly active antiretroviral therapy (HAART)-naive HIV-1-infected adults. In a pilot double-blind, randomized, placebo-controlled study, 57 HAART-naive HIV-1-infected patients received a unique oligosaccharide mixture (15 or 30 g short chain galactooligosaccharides/long chain fructooligosaccharides/pectin hydrolysate-derived acidic oligosaccharides (scGOS/lcFOS/pAOS) daily) or a placebo for 12 weeks. Microbiota composition improved significantly with increased bifidobacteria, decreased Clostridium coccoides/Eubacterium rectale cluster, and decreased pathogenic Clostridium lituseburense/Clostridium histolyticum group levels upon prebiotic supplementation. In addition, a reduction of soluble CD14 (sCD14), activated CD4+/CD25+ T cells, and significantly increased natural killer (NK) cell activity when compared with control group were seen in the treatment group. The results of this pilot trial highly significantly show that dietary supplementation with a prebiotic oligosaccharide mixture results in improvement of the gut microbiota composition, reduction of sCD14, CD4+ T-cell activation (CD25), and improved NK cell activity in HAART-naive HIV-infected individuals

    Gene Expression Profiles of Colonic Mucosa in Healthy Young Adult and Senior Dogs

    Get PDF
    Background: We have previously reported the effects of age and diet on nutrient digestibility, intestinal morphology, and large intestinal fermentation patterns in healthy young adult and senior dogs. However, a genome-wide molecular analysis of colonic mucosa as a function of age and diet has not yet been performed in dogs. Methodology/Principal Findings: Colonic mucosa samples were collected from six senior (12-year old) and six young adult (1-year old) female beagles fed one of two diets (animal protein-based vs. plant protein-based) for 12 months. Total RNA in colonic mucosa was extracted and hybridized to Affymetrix GeneChipH Canine Genome Arrays. Results indicated that the majority of gene expression changes were due to age (212 genes) rather than diet (66 genes). In particular, the colonic mucosa of senior dogs had increased expression of genes associated with cell proliferation, inflammation, stress response, and cellular metabolism, whereas the expression of genes associated with apoptosis and defensive mechanisms were decreased in senior vs. young adult dogs. No consistent diet-induced alterations in gene expression existed in both age groups, with the effects of diet being more pronounced in senior dogs than in young adult dogs. Conclusion: Our results provide molecular insight pertaining to the aged canine colon and its predisposition to dysfunction and disease. Therefore, our data may aid in future research pertaining to age-associated gastrointestinal physiologica

    Effects of fermentation products of pro- and prebiotics on trans- epithelial electrical resistance in an in vitro model of the colon

    No full text
    Evidence from in vivo and in vitro studies suggests that the consumption of pro- and prebiotics may inhibit colon carcinogenesis; however, the mechanisms involved have, thus far, proved elusive. There are some indications from animal studies that the effects are being exerted during the promotion stage of carcinogenesis. One feature of the promotion stage of colorectal cancer is the disruption of tight junctions, leading to a loss of integrity across the intestinal barrier. We have used the Caco-2 human adenocarcinoma cell line as a model for the intestinal epithelia. Trans-epithelial electrical resistance measurements indicate Caco-2 monolayer integrity, and we recorded changes to this integrity following exposure to the fermentation products of selected probiotics and prebiotics, in the form of nondigestible oligosaccharides (NDOs). Our results indicate that NDOs themselves exert varying, but generally minor, effects upon the strength of the tight junctions, whereas the fermentation products of probiotics and NDOs tend to raise tight junction integrity above that of the controls. This effect was bacterial species and oligosaccharide specific. Bifidobacterium Bb 12 was particularly effective, as were the fermentation products of Raftiline and Raftilose. We further investigated the ability of Raftilose fermentations to protect against the negative effects of deoxycholic acid (DCA) upon tight junction integrity. We found protection to be species dependent and dependent upon the presence of the fermentation products in the media at the same time as or after exposure to the DCA. Results suggest that the Raftilose fermentation products may prevent disruption of the intestinal epithelial barrier function during damage by tumor promoters

    Quantification of mitochondrial DNA mutation load

    Get PDF
    corecore