13 research outputs found

    Detailed opacity calculations for astrophysical applications

    Full text link
    Nowadays, several opacity codes are able to provide data for stellar structure models, but the computed opacities may show significant differences. In this work, we present state-of-the-art precise spectral opacity calculations, illustrated by stellar applications. The essential role of laboratory experiments to check the quality of the computed data is underlined. We review some X-ray and XUV laser and Z-pinch photo-absorption measurements as well as X-ray emission spectroscopy experiments involving hot dense plasmas produced by ultra-high-intensity laser irradiation. The measured spectra are systematically compared with the fine-structure opacity code SCO-RCG. Focus is put on iron, due to its crucial role in understanding asteroseismic observations of β\beta Cephei-type and Slowly Pulsating B stars, as well as of the Sun. For instance, in β\beta Cephei-type stars, the iron-group opacity peak excites acoustic modes through the "kappa-mechanism". A particular attention is paid to the higher-than-predicted iron opacity measured at the Sandia Z-machine at solar interior conditions. We discuss some theoretical aspects such as density effects, photo-ionization, autoionization or the "filling-the-gap" effect of highly excited states.Comment: submitted to "Atoms

    Detailed Opacity Calculations for Stellar Models

    Full text link
    Radiative opacity is an important quantity in the modeling of stellar structure and evolution. In the present work we recall the role of opacity in the interpretation of pulsations of different kinds of stars. The detailed opacity code SCO-RCG for local-thermodynamic-equilibrium (LTE) plasmas is described, as well as the OPAMCDF project dedicated to the spectroscopy of LTE and non-LTE plasmas. Interpretations, with the latter codes, of several laser and Z pinch experiments in conditions relevant to astrophysical applications are also presented and our work in progress as concerns the internal solar conditions is illustrated.Comment: submitted to ASP Conf. Se

    Excitation du 201 Hg dans les plasmas produits par laser

    Get PDF
    The use of high power lasers allows the study of the properties of matter in extremeconditions of temperature and density. Indeed, the interaction of a power laser and atarget creates a plasma in which the temperature is high enough to reach important degrees of ionization. These conditions can allow the excitation of the nucleus. Anucleus of interest to study the processes of nuclear excitation is the 201 Hg. Thiswork aims to design an experiment where the 201 Hg excitation will be observed in aplasma produced by a high power laser. The first part of this manuscript presents the calculation of the expected nuclear excitation rates in the plasma. For about ten years, nuclear excitation rates have been calculated using the average atom model. To validate this model a code named ADAM (french acronym for Beyond The Average Atom Model) was developed to calculate the nuclear excitation rates under the DCA (Detailed Configuration Accounting) hypothesis. ADAM allows us to deduce the thermo dynamical domain where the nuclear excitation rates determined with the average atom model are relevant. The second part of this manuscript presents the coupling of the excitation rate calculation with a hydrodynamic code to calculate the number of excited nuclei produced in one laser shot for different laser intensity. Finally, in the last part, first experimental approaches which will be used to design an experiment on a laser installation are presented. These approaches are based on the detection and determination of the amount of multicharged ions obtained far from the target (~80 cm). For this purpose, an electrostatic analyzer was used.L'utilisation des lasers de puissance permet l'étude des propriétés de la matière dans des conditions extrêmes de température et de densité. En effet, l'interaction d'un laser de puissance sur une cible créée un plasma dont la température est suffisamment grande pour atteindre des degrés d'ionisation élevés. Ces conditions peuvent permettre, via divers processus, d'exciter le noyau dans un état nucléaire et notamment dans un état isomère. Un noyau d'intérêt pour étudier ces phénomènes est le 201 Hg. Ce travail de thèse s'inscrit dans le cadre du dimensionnement d'une expérience visant la mise en évidence de l'excitation du 201 Hg dans un plasma laser.La première partie de ce manuscrit présente la détermination des taux d'excitation nucléaire dans les plasmas. Depuis une dizaine d'années les taux d'excitation sont déterminés en utilisant le modèle de l'atome moyen. Afin de valider ce modèle, un code, appelé ADAM (Au-Delà de l'Atome Moyen), a été développé afin de calculer le taux d'excitation nucléaire en DCA (Detailed Conguration Accounting). Il nous permettra d'en déduire un domaine thermodynamique en température et densité où les taux d'excitation déterminés avec le modèle de l'atome moyen sont pertinents.La deuxième partie présente le couplage des taux d'excitation nucléaire avec un code hydrodynamique afin d'en déduire, pour différentes intensités laser, le nombre de noyaux qu'il serait possible d'exciter par tir laser. Enfin, dans une dernière partie,les premières approches expérimentales qui serviront au dimensionnement d'une expérience sur une installation laser sont présentées. Ces approches sont basées sur la détection et la détermination de la quantité d'ions multichargés obtenue loin de la cible (~80 cm). Pour cela, un déviateur électrostatique a été utilisé

    Constraint Identification Using Modified Hoare Logic on Hybrid Models of Gene Networks

    Get PDF
    We present a new hybrid Hoare logic dedicated for a class of linear hybrid automata well suited to model gene regulatory networks. These automata rely on Thomas\u27 discrete framework in which qualitative parameters have been replaced by continuous parameters called celerities. The identification of these parameters remains one of the keypoints of the modelling process, and is difficult especially because the modelling framework is based on a continuous time. We introduce Hoare triples which handle biological traces and pre/post-conditions. Observed chronometrical biological traces play the role of an imperative program for classical Hoare logic and our hybrid Hoare logic, defined by inference rules, is proved to be sound. Furthermore, we present a weakest precondition calculus (a la Dijkstra) which leads to constraints on dynamical parameters. Finally, we illustrate our "constraints generator" with a simplified circadian clock model describing the rhythmicity of cells in mammals on a 24-hour period

    201 Hg excitation in plasma produced by laser

    No full text
    L'utilisation des lasers de puissance permet l'étude des propriétés de la matière dans des conditions extrêmes de température et de densité. En effet, l'interaction d'un laser de puissance sur une cible créée un plasma dont la température est suffisamment grande pour atteindre des degrés d'ionisation élevés. Ces conditions peuvent permettre, via divers processus, d'exciter le noyau dans un état nucléaire et notamment dans un état isomère. Un noyau d'intérêt pour étudier ces phénomènes est le 201 Hg. Ce travail de thèse s'inscrit dans le cadre du dimensionnement d'une expérience visant la mise en évidence de l'excitation du 201 Hg dans un plasma laser.La première partie de ce manuscrit présente la détermination des taux d'excitation nucléaire dans les plasmas. Depuis une dizaine d'années les taux d'excitation sont déterminés en utilisant le modèle de l'atome moyen. Afin de valider ce modèle, un code, appelé ADAM (Au-Delà de l'Atome Moyen), a été développé afin de calculer le taux d'excitation nucléaire en DCA (Detailed Conguration Accounting). Il nous permettra d'en déduire un domaine thermodynamique en température et densité où les taux d'excitation déterminés avec le modèle de l'atome moyen sont pertinents.La deuxième partie présente le couplage des taux d'excitation nucléaire avec un code hydrodynamique afin d'en déduire, pour différentes intensités laser, le nombre de noyaux qu'il serait possible d'exciter par tir laser. Enfin, dans une dernière partie,les premières approches expérimentales qui serviront au dimensionnement d'une expérience sur une installation laser sont présentées. Ces approches sont basées sur la détection et la détermination de la quantité d'ions multichargés obtenue loin de la cible (~80 cm). Pour cela, un déviateur électrostatique a été utilisé.The use of high power lasers allows the study of the properties of matter in extremeconditions of temperature and density. Indeed, the interaction of a power laser and atarget creates a plasma in which the temperature is high enough to reach important degrees of ionization. These conditions can allow the excitation of the nucleus. Anucleus of interest to study the processes of nuclear excitation is the 201 Hg. Thiswork aims to design an experiment where the 201 Hg excitation will be observed in aplasma produced by a high power laser. The first part of this manuscript presents the calculation of the expected nuclear excitation rates in the plasma. For about ten years, nuclear excitation rates have been calculated using the average atom model. To validate this model a code named ADAM (french acronym for Beyond The Average Atom Model) was developed to calculate the nuclear excitation rates under the DCA (Detailed Configuration Accounting) hypothesis. ADAM allows us to deduce the thermo dynamical domain where the nuclear excitation rates determined with the average atom model are relevant. The second part of this manuscript presents the coupling of the excitation rate calculation with a hydrodynamic code to calculate the number of excited nuclei produced in one laser shot for different laser intensity. Finally, in the last part, first experimental approaches which will be used to design an experiment on a laser installation are presented. These approaches are based on the detection and determination of the amount of multicharged ions obtained far from the target (~80 cm). For this purpose, an electrostatic analyzer was used

    201 Hg excitation in plasma produced by laser

    No full text
    L'utilisation des lasers de puissance permet l'étude des propriétés de la matière dans des conditions extrêmes de température et de densité. En effet, l'interaction d'un laser de puissance sur une cible créée un plasma dont la température est suffisamment grande pour atteindre des degrés d'ionisation élevés. Ces conditions peuvent permettre, via divers processus, d'exciter le noyau dans un état nucléaire et notamment dans un état isomère. Un noyau d'intérêt pour étudier ces phénomènes est le 201 Hg. Ce travail de thèse s'inscrit dans le cadre du dimensionnement d'une expérience visant la mise en évidence de l'excitation du 201 Hg dans un plasma laser.La première partie de ce manuscrit présente la détermination des taux d'excitation nucléaire dans les plasmas. Depuis une dizaine d'années les taux d'excitation sont déterminés en utilisant le modèle de l'atome moyen. Afin de valider ce modèle, un code, appelé ADAM (Au-Delà de l'Atome Moyen), a été développé afin de calculer le taux d'excitation nucléaire en DCA (Detailed Conguration Accounting). Il nous permettra d'en déduire un domaine thermodynamique en température et densité où les taux d'excitation déterminés avec le modèle de l'atome moyen sont pertinents.La deuxième partie présente le couplage des taux d'excitation nucléaire avec un code hydrodynamique afin d'en déduire, pour différentes intensités laser, le nombre de noyaux qu'il serait possible d'exciter par tir laser. Enfin, dans une dernière partie,les premières approches expérimentales qui serviront au dimensionnement d'une expérience sur une installation laser sont présentées. Ces approches sont basées sur la détection et la détermination de la quantité d'ions multichargés obtenue loin de la cible (~80 cm). Pour cela, un déviateur électrostatique a été utilisé.The use of high power lasers allows the study of the properties of matter in extremeconditions of temperature and density. Indeed, the interaction of a power laser and atarget creates a plasma in which the temperature is high enough to reach important degrees of ionization. These conditions can allow the excitation of the nucleus. Anucleus of interest to study the processes of nuclear excitation is the 201 Hg. Thiswork aims to design an experiment where the 201 Hg excitation will be observed in aplasma produced by a high power laser. The first part of this manuscript presents the calculation of the expected nuclear excitation rates in the plasma. For about ten years, nuclear excitation rates have been calculated using the average atom model. To validate this model a code named ADAM (french acronym for Beyond The Average Atom Model) was developed to calculate the nuclear excitation rates under the DCA (Detailed Configuration Accounting) hypothesis. ADAM allows us to deduce the thermo dynamical domain where the nuclear excitation rates determined with the average atom model are relevant. The second part of this manuscript presents the coupling of the excitation rate calculation with a hydrodynamic code to calculate the number of excited nuclei produced in one laser shot for different laser intensity. Finally, in the last part, first experimental approaches which will be used to design an experiment on a laser installation are presented. These approaches are based on the detection and determination of the amount of multicharged ions obtained far from the target (~80 cm). For this purpose, an electrostatic analyzer was used

    Condition for sustained oscillations in repressilator based on a hybrid modeling of gene regulatory networks

    No full text
    International audienceIn this work, we study the existence of sustained oscillations in the "canonical" repressilator, a basic synthetic circuit of 3 genes leading to sustained oscillations. Previous works mostly used differential equations to study the repressilator. In our work, a pre-existing hybrid modeling framework of gene regulatory networks called HGRN is used to model this system. Compared to differential equations, dynamical properties of HGRNs are easier to prove theoretically due to its lower dynamical complexity. The objective of this work is to find conditions for the existence of sustained oscillations described by separable constraints on parameters. With such separable constraints, each parameter is constrained individually by an interval, which can provide useful information for the design of synthetic circuits. Our two major contributions are the following: firstly, we develop, by using the Poincaré map, a sufficient and necessary condition for the existence of sustained oscillations; then, based on this condition, we give a method using the range enclosure property of Bernstein coefficients to compute compatible separable constraints. By applying this method, we successfully obtain sets of conditions for the existence of sustained oscillations described as separable constraints

    K-shell spectroscopy in hot plasmas: Stark effect, Breit interaction and QED corrections

    No full text
    International audienceThe broadening of lines by Stark effect is widely used for inferring electron density and temperature in plasmas. Stark-effect calculations often rely on atomic data (transition rates, energy levels,…) not always exhaustive and/or valid only for isolated atoms. In this work, we first present a recent development in the detailed opacity code SCO-RCG for K-shell spectroscopy. The approach is adapted from the work of Gilles and Peyrusse. Neglecting non-diagonal terms in dipolar and collision operators, the line profile is expressed as a sum of Voigt functions associated to the Stark components. The formalism relies on the use of parabolic coordinates and the relativistic fine structure of Lyman lines is included by diagonalizing the Hamiltonian matrix associated to quantum states having the same principal quantum number n. The SCO-RCG code enables one to investigate plasma environment effects, the impact of the microfield distribution, the decoupling between electron and ion temperatures and the role of satellite lines (such as Li-like 1snℓn′ℓ′ – 1s2nℓ, Be-like, etc.). Atomic structure calculations have reached levels of accuracy which require evaluation of Breit interaction and many-electron quantum electro-dynamics (QED) contributions. Although much work was done for QED effects (self-energy and vacuum polarization) in hydrogenic atoms, the case of an arbitrary number of electrons is more complicated. Since exact analytic solutions do not exist, a number of heuristic methods have been used to approximate the screening of additional electrons in the self-energy part. We compare different ways of including such effects in atomic-structure codes (Slater-Condon, Multi-Configuration Dirac-Fock, etc.)
    corecore