302 research outputs found

    An interprofessional, intercultural, immersive short-term study abroad program: public health and service systems in rome

    Get PDF
    The purpose of this paper is to describe a short-term study abroad program that exposes engineering and nursing undergraduate students from the United States and Italy to an intercultural and interprofessional immersion experience. Faculty from Purdue University and Sapienza Università di Roma collaborated to design a technical program that demonstrates the complementary nature of engineering and public health in the service sector, with Rome as an integral component of the program. Specifically, the intersection of topics including systems, reliability, process flow, maintenance management, and public health are covered through online lectures, in-class activities and case study discussions, field experiences, and assessments. Herein, administrative issues such as student recruitment, selection, and preparation are elucidated. Additionally, the pedagogical approach used to ensure constructive alignment among the program goals, the intended learning outcomes, and the teaching and learning activities is described. Finally, examples of learning outcomes resulting from this alignment are provided

    P85α SH2 Domain Phosphorylation by IKK Promotes Feedback Inhibition of PI3K and Akt in Response to Cellular Starvation

    Get PDF
    The IκB kinase (IKK) pathway is an essential mediator of inflammatory, oncogenic, and cell stress pathways. Recently IKK was shown to be essential for autophagy induction in mammalian cells independent of its ability to regulate NF-κB, but the mechanism by which this occurs is unclear. Here we demonstrate that the p85 regulatory subunit of PI3K is an IKK substrate, phosphorylated at S690 in vitro and in vivo in response to cellular starvation. Cells expressing p85 S690A or inhibited for IKK activity exhibit increased Akt activity following cell starvation, demonstrating that p85 phosphorylation is required for starvation-induced PI3K feedback inhibition. S690 is in a conserved region of the p85 cSH2 domain, and IKK-mediated phosphorylation of this site results in decreased affinity for tyrosine-phosphorylated proteins and decreased PI3K membrane localization. Finally, leucine deprivation is shown to be necessary and sufficient for starvation-induced, IKK-mediated p85 phosphorylation and PI3K feedback inhibition

    Pattern Formation in Interface Depinning and Other Models: Erratically Moving Spatial Structures

    Full text link
    We study erratically moving spatial structures that are found in a driven interface in a random medium at the depinning threshold. We introduce a bond-disordered variant of the Sneppen model and study the effect of extremal dynamics on the morphology of the interface. We find evidence for the formation of a structure which moves along with the growth site. The time average of the structure, which is defined with respect to the active spot of growth, defines an activity-centered pattern. Extensive Monte Carlo simulations show that the pattern has a tail which decays slowly, as a power law. To understand this sort of pattern formation, we write down an approximate integral equation involving the local interface dynamics and long-ranged jumps of the growth spot. We clarify the nature of the approximation by considering a model for which the integral equation is exactly derivable from an extended master equation. Improvements to the equation are considered by adding a second coupled equation which provides a self-consistent description. The pattern, which defines a one-point correlation function, is shown to have a strong effect on ordinary space-fixed two-point correlation functions. Finally we present evidence that this sort of pattern formation is not confined to the interface problem, but is generic to situations in which the activity at succesive time steps is correlated, as for instance in several other extremal models. We present numerical results for activity-centered patterns in the Bak-Sneppen model of evolution and the Zaitsev model of low-temperature creep.Comment: RevTeX, 18 pages, 19 eps-figures, To appear in Phys. Rev.

    Does the transcription factor AP-2β have an impact on the genetic and early environmental influence on ethanol consumption?

    Get PDF
    Genes involved in alcoholism have consensus sites for the transcription factor activator protein (TFAP) 2β. In the present study, we investigated TFAP-2β protein levels in the ethanol-preferring alko, alcohol (AA) and the ethanol-avoiding alko, non-alcohol (ANA) rat lines. Furthermore, basal and ethanol-induced TFAP-2β levels were examined in Wistar rats exposed to different early postnatal environments that are known to affect later ethanol consumption. Taken together, we found differences in brainstem TFAP-2β protein between the AA and ANA rats

    Global Analysis of Genetic, Epigenetic and Transcriptional Polymorphisms in Arabidopsis thaliana Using Whole Genome Tiling Arrays

    Get PDF
    Whole genome tiling arrays provide a high resolution platform for profiling of genetic, epigenetic, and gene expression polymorphisms. In this study we surveyed natural genomic variation in cytosine methylation among Arabidopsis thaliana wild accessions Columbia (Col) and Vancouver (Van) by comparing hybridization intensity difference between genomic DNA digested with either methylation-sensitive (HpaII) or -insensitive (MspI) restriction enzyme. Single Feature Polymorphisms (SFPs) were assayed on a full set of 1,683,620 unique features of Arabidopsis Tiling Array 1.0F (Affymetrix), while constitutive and polymorphic CG methylation were assayed on a subset of 54,519 features, which contain a 5′CCGG3′ restriction site. 138,552 SFPs (1% FDR) were identified across enzyme treatments, which preferentially accumulated in pericentromeric regions. Our study also demonstrates that at least 8% of all analyzed CCGG sites were constitutively methylated across the two strains, while about 10% of all analyzed CCGG sites were differentially methylated between the two strains. Within euchromatin arms, both constitutive and polymorphic CG methylation accumulated in central regions of genes but under-represented toward the 5′ and 3′ ends of the coding sequences. Nevertheless, polymorphic methylation occurred much more frequently in gene ends than constitutive methylation. Inheritance of methylation polymorphisms in reciprocal F1 hybrids was predominantly additive, with F1 plants generally showing levels of methylation intermediate between the parents. By comparing gene expression profiles, using matched tissue samples, we found that magnitude of methylation polymorphism immediately upstream or downstream of the gene was inversely correlated with the degree of expression variation for that gene. In contrast, methylation polymorphism within genic region showed weak positive correlation with expression variation. Our results demonstrated extensive genetic and epigenetic polymorphisms between Arabidopsis accessions and suggested a possible relationship between natural CG methylation variation and gene expression variation

    Reversal of Cocaine-Conditioned Place Preference through Methyl Supplementation in Mice: Altering Global DNA Methylation in the Prefrontal Cortex

    Get PDF
    Analysis of global methylation in cells has revealed correlations between overall DNA methylation status and some biological states. Recent studies suggest that epigenetic regulation through DNA methylation could be responsible for neuroadaptations induced by addictive drugs. However, there is no investigation to determine global DNA methylation status following repeated exposure to addictive drugs. Using mice conditioned place preference (CPP) procedure, we measured global DNA methylation level in the nucleus accumbens (NAc) and the prefrontal cortex (PFC) associated with drug rewarding effects. We found that cocaine-, but not morphine- or food-CPP training decreased global DNA methylation in the PFC. Chronic treatment with methionine, a methyl donor, for 25 consecutive days prior to and during CPP training inhibited the establishment of cocaine, but not morphine or food CPP. We also found that both mRNA and protein level of DNMT (DNA methytransferase) 3b in the PFC were downregulated following the establishment of cocaine CPP, and the downregulation could be reversed by repeated administration of methionine. Our study indicates a crucial role of global PFC DNA hypomethylation in the rewarding effects of cocaine. Reversal of global DNA hypomethylation could significantly attenuate the rewarding effects induced by cocaine. Our results suggest that methionine may have become a potential therapeutic target to treat cocaine addiction

    Neuropeptidomic Components Generated by Proteomic Functions in Secretory Vesicles for Cell–Cell Communication

    Get PDF
    Diverse neuropeptides participate in cell–cell communication to coordinate neuronal and endocrine regulation of physiological processes in health and disease. Neuropeptides are short peptides ranging in length from ~3 to 40 amino acid residues that are involved in biological functions of pain, stress, obesity, hypertension, mental disorders, cancer, and numerous health conditions. The unique neuropeptide sequences define their specific biological actions. Significantly, this review article discusses how the neuropeptide field is at the crest of expanding knowledge gained from mass-spectrometry-based neuropeptidomic studies, combined with proteomic analyses for understanding the biosynthesis of neuropeptidomes. The ongoing expansion in neuropeptide diversity lies in the unbiased and global mass-spectrometry-based approaches for identification and quantitation of peptides. Current mass spectrometry technology allows definition of neuropeptide amino acid sequence structures, profiling of multiple neuropeptides in normal and disease conditions, and quantitative peptide measures in biomarker applications to monitor therapeutic drug efficacies. Complementary proteomic studies of neuropeptide secretory vesicles provide valuable insight into the protein processes utilized for neuropeptide production, storage, and secretion. Furthermore, ongoing research in developing new computational tools will facilitate advancements in mass-spectrometry-based identification of small peptides. Knowledge of the entire repertoire of neuropeptides that regulate physiological systems will provide novel insight into regulatory mechanisms in health, disease, and therapeutics
    corecore