106 research outputs found

    Diversity of floral visitors to sympatric Lithophragma species differing in floral morphology

    Get PDF
    Most coevolving relationships between pairs of species are embedded in a broader multispecific interaction network. The mutualistic interaction between Lithophragma parviflorum (Saxifragaceae) and its pollinating floral parasite Greya politella (Lepidoptera, Prodoxidae) occurs in some communities as a pairwise set apart from most other interactions in those communities. In other communities, however, this pair of species occurs with congeners and with other floral visitors to Lithophragma. We analyzed local and geographic differences in the network formed by interactions between Lithophragma plants and Greya moths in communities containing two Lithophragma species, two Greya species, and floral visitors other than Greya that visit Lithophragma flowers. Our goal was to evaluate if non-Greya visitors were common, if visitor assembly differs between Lithophragma species and populations and if these visitors act as effective pollinators. Sympatric populations of L. heterophyllum and L. parviflorum differ in floral traits that may affect assemblies of floral visitors. Visitation rates by non-Greya floral visitors were low, and the asymptotic number of visitor species was less than 20 species in all populations. Lithophragma species shared some of the visitors, with visitor assemblages differing between sites more for L. heterophyllum than for L. parviflorum. Pollination efficacy experiments showed that most visitors were poor pollinators. Single visits to flowers by this assemblage of species resulted in significantly higher seed set in Lithophragma heterophyllum (30.6 ± 3.9 SE) than in L. parviflorum (4.7 ± 3.4 SE). This difference was consistent between sites, suggesting that these visitors provide a better fit to the floral morphology of L. heterophyllum. Overall, none of the non-Greya visitors appears to be either sufficiently common or efficient as a pollinator to impose strong selection on any of these four Lithophragma populations in comparison with Greya, which occurs within almost all populations of these species throughout their geographic ranges

    Expression Analysis of PAC1-R and PACAP Genes in Zebrafish Embryos

    Get PDF
    This study describes the expression of the pituitary adenylate cyclase-activating polypeptide (PACAP1 and PACAP2) and PAC1 receptor genes (PAC1a-R and PAC1b-R) in the brain of zebrafish (Danio rerio) during development. In situ hybridization of the 24- and 48-hpf embryos revealed that PACAP genes were expressed in the telencephalon, the diencephalon, the rhombencephalon, and the neurons in the dorsal part of the spinal cord. PACAP2 mRNA appears to be the most abundant form during brain development. The two PAC1-R subtypes showed a similar expression pattern: mRNAs were detected in the forebrain, the thalamus, and the rhombencephalon. However, in the tectum, only PAC1b-R gene was detected. These results suggest that, in fish, PACAP may play a role in brain development

    Diurnal Variation in Urodynamics of Rat

    Get PDF
    In humans, the storage and voiding functions of the urinary bladder have a characteristic diurnal variation, with increased voiding during the day and urine storage during the night. However, in animal models, the daily functional differences in urodynamics have not been well-studied. The goal of this study was to identify key urodynamic parameters that vary between day and night. Rats were chronically instrumented with an intravesical catheter, and bladder pressure, voided volumes, and micturition frequency were measured by continuous filling cystometry during the light (inactive) or dark (active) phases of the circadian cycle. Cage activity was recorded by video during the experiment. We hypothesized that nocturnal rats entrained to a standard 12:12 light:dark cycle would show greater ambulatory activity and more frequent, smaller volume micturitions in the dark compared to the light. Rats studied during the light phase had a bladder capacity of 1.44±0.21 mL and voided every 8.2±1.2 min. Ambulatory activity was lower in the light phase, and rats slept during the recording period, awakening only to urinate. In contrast, rats studied during the dark were more active, had a lower bladder capacities (0.65±0.18 mL), and urinated more often (every 3.7±0.9 min). Average bladder pressures were not significantly different between the light and dark (13.40±2.49 and 12.19±2.85 mmHg, respectively). These results identify a day-night difference in bladder capacity and micturition frequency in chronically-instrumented nocturnal rodents that is phase-locked to the normal circadian locomotor activity rhythm of the animal. Furthermore, since it has generally been assumed that the daily hormonal regulation of renal function is a major driver of the circadian rhythm in urination, and few studies have addressed the involvement of the lower urinary tract, these results establish the bladder itself as a target for circadian regulation

    Cultivation-Independent Methods Reveal Differences among Bacterial Gut Microbiota in Triatomine Vectors of Chagas Disease

    Get PDF
    Chagas disease is one of the most important endemic diseases of South and Central America. Its causative agent is the protozoan Trypanosoma cruzi, which is transmitted to humans by blood-feeding insects known as triatomine bugs. These vectors mainly belong to Rhodnius, Triatoma and Panstrongylus genera of Reduviidae. The bacterial communities in the guts of these vectors may have important effects on the biology of T. cruzi. For this reason, we analyzed the bacterial diversity hosted in the gut of different species of triatomines using cultivation-independent methods. Among Rhodnius sp., we observed similar bacterial communities from specimens obtained from insectaries or sylvatic conditions. Endosymbionts of the Arsenophonus genus were preferentially associated with insects of the Panstrongylus and Triatoma genera, whereas the bacterial genus Serratia and Candidatus Rohrkolberia were typical of Rhodnius and Dipetalogaster, respectively. The diversity of the microbiota tended to be the largest in the Triatoma genus, with species of both Arsenophonus and Serratia being detected in T. infestans

    Ketamine Influences CLOCK:BMAL1 Function Leading to Altered Circadian Gene Expression

    Get PDF
    Major mood disorders have been linked to abnormalities in circadian rhythms, leading to disturbances in sleep, mood, temperature, and hormonal levels. We provide evidence that ketamine, a drug with rapid antidepressant effects, influences the function of the circadian molecular machinery. Ketamine modulates CLOCK:BMAL1-mediated transcriptional activation when these regulators are ectopically expressed in NG108-15 neuronal cells. Inhibition occurs in a dose-dependent manner and is attenuated after treatment with the GSK3β antagonist SB21673. We analyzed the effect of ketamine on circadian gene expression and observed a dose-dependent reduction in the amplitude of circadian transcription of the Bmal1, Per2, and Cry1 genes. Finally, chromatin-immunoprecipitation analyses revealed that ketamine altered the recruitment of the CLOCK:BMAL1 complex on circadian promoters in a time-dependent manner. Our results reveal a yet unsuspected molecular mode of action of ketamine and thereby may suggest possible pharmacological antidepressant strategies

    Climate Change and the Potential Distribution of an Invasive Shrub, Lantana camara L

    Get PDF
    The threat posed by invasive species, in particular weeds, to biodiversity may be exacerbated by climate change. Lantana camara L. (lantana) is a woody shrub that is highly invasive in many countries of the world. It has a profound economic and environmental impact worldwide, including Australia. Knowledge of the likely potential distribution of this invasive species under current and future climate will be useful in planning better strategies to manage the invasion. A process-oriented niche model of L. camara was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. The model was calibrated using data from several knowledge domains, including phenological observations and geographic distribution records. The potential distribution of lantana under historical climate exceeded the current distribution in some areas of the world, notably Africa and Asia. Under future scenarios, the climatically suitable areas for L. camara globally were projected to contract. However, some areas were identified in North Africa, Europe and Australia that may become climatically suitable under future climates. In South Africa and China, its potential distribution could expand further inland. These results can inform strategic planning by biosecurity agencies, identifying areas to target for eradication or containment. Distribution maps of risk of potential invasion can be useful tools in public awareness campaigns, especially in countries that have been identified as becoming climatically suitable for L. camara under the future climate scenarios
    corecore