353 research outputs found
Assessing the role of dispersed floralresources for managed bees in providingsupporting ecosystem services for croppollination
Most pollination ecosystem services studies have focussed on wild pollinators and their dependence on natural floral resources adjacent to crop fields. However, managed pollinators depend on a mixture of floral resources that are spatially separated from the crop field. Here, we consider the supporting role these resources play as an ecosystem services provider to quantify the use and availability of floral resources, and to estimate their relative contribution to support pollination services of managed honeybees. Beekeepers supplying pollination services to the Western Cape deciduous fruit industry were interviewed to obtain information on their use of floral resources. For 120 apiary sites, we also analysed floral resources within a two km radius of each site based on geographic data. The relative availability of floral resources at sites was compared to regional availability. The relative contribution of floral resources-types to sustain managed honeybees was estimated. Beekeepers showed a strong preference for eucalypts and canola. Beekeepers selectively placed more hives at sites with eucalypt and canola and less with natural vegetation. However, at the landscape-scale, eucalypt was the least available resource, whereas natural vegetation was most common. Based on analysis of apiary sites, we estimated that 700,818 ha of natural vegetation, 73,910 ha of canola fields, and 10,485 ha of eucalypt are used to support the managed honeybee industry in the Western Cape. Whereas the Cape managed honeybee system uses a bee native to the region, alien plant species appear disproportionately important among the floral resources being exploited. We suggest that an integrated approach, including evidence from interview and landscape data, and fine-scale biological data is needed to study floral resources supporting managed honeybees
Optimising regionalisation techniques: identifying centres of endemism in the extraordinarily endemic-rich Cape Floristic Region
We used a very large dataset (>40% of all species) from the endemic-rich Cape Floristic Region (CFR) to explore the impact of different weighting techniques, coefficients to calculate similarity among the cells, and clustering approaches on biogeographical regionalisation. The results were used to revise the biogeographical subdivision of the CFR. We show that weighted data (down-weighting widespread species), similarity calculated using Kulczinsky's second measure, and clustering using UPGMA resulted in the optimal classification. This maximized the number of endemic species, the number of centres recognized, and operational geographic units assigned to centres of endemism (CoEs). We developed a dendrogram branch order cut-off (BOC) method to locate the optimal cut-off points on the dendrogram to define candidate clusters. Kulczinsky's second measure dendrograms were combined using consensus, identifying areas of conflict which could be due to biotic element overlap or transitional areas. Post-clustering GIS manipulation substantially enhanced the endemic composition and geographic size of candidate CoEs. Although there was broad spatial congruence with previous phytogeographic studies, our techniques allowed for the recovery of additional phytogeographic detail not previously described for the CFR
Effects of chlorpyrifos on macroinvertebrate communities in coastal stream mesocosms
This study measured the effects of a single pulse of chlorpyrifos at nominal concentrations of 1 and 10 μg/l on the macroinvertebrate community structure of a coastal stream mesocosm system. Analysis of data using Principal Response Curves (PRC) and Monte Carlo tests showed significant changes in the treated stream mesocosms relative to that of the controls. These changes in the macroinvertebrate assemblages occurred within 6 h, and persisted for at least 124 days after dosing. Significant community-level effects were detected at the lowest concentration on days 2 and 16 post-dosing, giving a no-observed effect concentration (NOECcommunity) of 1.2 μg/l (measured). The mayflies Atalophlebia sp. and Koorrnonga sp., Chironomidae and Acarina were all sensitive to chlorpyrifos and decreased in abundance in treated mesocosms after dosing. The fauna of these coastal stream mesocosms showed similar sensitivity to chlorpyrifos with that of other reported studies, but there was no evidence of recovery after 124 days. © 2007 Springer Science+Business Media, LLC
Comparative morphology of the mouthparts of the megadiverse South African monkey beetles (Scarabaeidae: Hopliini): feeding adaptations and guild structure
Although anthophilous Coleoptera are regarded to be unspecialised flower-visiting insects, monkey beetles (Scarabaeidae: Hopliini) represent one of the most important groups of pollinating insects in South Africa’s floristic hotspot of the Greater Cape Region. South African monkey beetles are known to feed on floral tissue; however, some species seem to specialise on pollen and/or nectar. The present study examined the mouthpart morphology and gut content of various hopliine species to draw conclusions on their feeding preferences. According to the specialisations of their mouthparts, the investigated species were classified into different feeding groups. Adaptations to pollen-feeding included a well-developed, toothed molar and a lobe-like, setose lacinia mobilis on the mandible as well as curled hairs or sclerotized teeth on the galea of the maxillae. Furthermore, elongated mouthparts were interpreted as adaptations for nectar feeding. Floral- and folial-tissue feeding species showed sclerotized teeth on the maxilla, but the lacinia was mostly found to be reduced to a sclerotized ledge. While species could clearly be identified as floral or folial tissue feeding, several species showed intermediate traits suggesting both pollen and nectar feeding adaptations. Mismatches found between mouthpart morphology and previously reported flower visiting behaviours across different genera and species requires alternative explanations, not necessarily associated with feeding preferences. Although detailed examinations of the mouthparts allowed conclusions about the feeding preference and flower-visiting behaviour, additional morphological and behavioural investigations, combined with greater taxon sampling and phylogenetic data, are still necessary to fully understand hopliine host plant relationships, related to monkey beetle diversity
Hidden Diversity—A New Speciose Gall Midge Genus (Diptera: Cecidomyiidae) Associated with Succulent Aizoaceae in South Africa
Aizoaceae (Caryophyllales) constitute one of the major floral components of the unique Greater Cape Floristic Region (GCFR), with more than 1700 species and 70% endemism. Within succulent Aizoaceae, the subfamily Ruschioideae is the most speciose and rapidly diversifying clade, offering potential niches for the diversification of specialized herbivorous insects. Nevertheless, insect diversity on these plants has not been studied to date, and knowledge of gall-inducing insects in the Afrotropics is generally scarce. Our recent observations indicate that succulent Aizoaceae in the GCFR support a rich and largely unstudied community of gall midges (Diptera: Cecidomyiidae). Here, we provide a first report of their diversity with a description of a new genus, Ruschiola Dorchin, and ten new species, based on morphological and molecular analyses of material collected during a three-year targeted survey across major GCFR vegetation types. A high degree of morphological uniformity in Ruschiola suggests recent diversification and necessitated the use of molecular data and laboratory rearing from host plants to verify species boundaries and host ranges
Time management and nectar flow: flower handling and suction feeding in long-proboscid flies (Nemestrinidae: Prosoeca)
A well-developed suction pump in the head represents an important adaptation for nectar-feeding insects, such as Hymenoptera, Lepidoptera and Diptera. This pumping organ creates a pressure gradient along the proboscis, which is responsible for nectar uptake. The extremely elongated proboscis of the genus Prosoeca (Nemestrinidae) evolved as an adaptation to feeding from long, tubular flowers. According to the functional constraint hypothesis, nectar uptake through a disproportionately elongated, straw-like proboscis increases flower handling time and consequently lowers the energy intake rate. Due to the conspicuous length variation of the proboscis of Prosoeca, individuals with longer proboscides are hypothesised to have longer handling times. To test this hypothesis, we used field video analyses of flower-visiting behaviour, detailed examinations of the suction pump morphology and correlations of proboscis length with body length and suction pump dimensions. Using a biomechanical framework described for nectar-feeding Lepidoptera in relation to proboscis length and suction pump musculature, we describe and contrast the system in long-proboscid flies. Flies with longer proboscides spent significantly more time drinking from flowers. In addition, proboscis length and body length showed a positive allometric relationship. Furthermore, adaptations of the suction pump included an allometric relationship between proboscis length and suction pump muscle volume and a combination of two pumping organs. Overall, the study gives detailed insight into the adaptations required for long-proboscid nectar feeding, and comparisons with other nectar-sucking insects allow further considerations of the evolution of the suction pump in insects with sucking mouthparts. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00114-013-1114-6) contains supplementary material, which is available to authorized users
Roles of spatial scale and rarity on the relationship between butterfly species richness and human density in South Africa
Wildlife and humans tend to prefer the same productive environments, yet high human densities
often lead to reduced biodiversity. Species richness is often positively correlated with
human population density at broad scales, but this correlation could also be caused by unequal
sampling effort leading to higher species tallies in areas of dense human activity. We
examined the relationships between butterfly species richness and human population density
at five spatial resolutions ranging from 2' to 60' across South Africa. We used atlas-type
data and spatial interpolation techniques aimed at reducing the effect of unequal spatial
sampling. Our results confirm the general positive correlation between total species richness
and human population density. Contrary to our expectations, the strength of this positive
correlation did not weaken at finer spatial resolutions. The patterns observed using total
species richness were driven mostly by common species. The richness of threatened and
restricted range species was not correlated to human population density. None of the correlations
we examined were particularly strong, with much unexplained variance remaining,
suggesting that the overlap between butterflies and humans is not strong compared to other
factors not accounted for in our analyses. Special consideration needs to be made regarding
conservation goals and variables used when investigating the overlap between species
and humans for biodiversity conservation.SM was supported by a postdoctoral
fellowship from the University of Pretoria (www.up.ac.
za), followed by one from the South African National
Biodiversity Institute (www.sanbi.org.za). RA was
supported by the National Research Foundation of
South Africa (Grant 85802; www.nrf.ac.za). JFC was
supported by a National Research Foundation of
South Africa's Research Career Award Fellowship.http://www.plosone.orgam201
Factors associated with positive urine cultures in cats with subcutaneous ureteral bypass system implantation
Objectives
The aims of this study were to report the postoperative incidence of subcutaneous ureteral bypass (SUB)-associated bacteriuria and risk factors in a large population of UK cats, to identify the commonly implicated isolates in these cases and to report associations of positive postoperative urine cultures with device occlusion or a need for further surgery.
Methods
Electronic clinical records were reviewed to identify cats with ureteral obstruction that underwent unilateral or bilateral SUB implantation between September 2011 and September 2019. In total, 118 client-owned cats were included in the study population. Information recorded included signalment, history, surgical and biochemical factors, urinalysis and culture results. Multivariable logistic regression was performed to identify variables associated with a positive postoperative culture.
Results
In total, 10 cats (8.5%) had a positive postoperative culture within 1 month postsurgery and 28 cats (23.7%) within 1 year postsurgery. Cats with a positive preoperative culture were significantly more likely to have a positive culture within 6 months postoperatively (odds ratio [OR] 4.09, 95% confidence interval [CI] 1.18–14.18; P = 0.026). Of the 14 cats with a positive preoperative culture, six (42.9%) returned a positive culture within 1 year postoperatively, and in four cases (66.7%) the same isolate was identified. Cats with a higher end-anaesthetic rectal temperature were significantly less likely to return a positive culture within 3 months (OR 0.398, 95% CI 0.205–0.772; P = 0.006) postsurgery. Cats culturing positive for Escherichia coli at any time point (OR 4.542, 95% CI 1.485–13.89; P = 0.008) were significantly more likely to have their implant removed or replaced.
Conclusions and relevance
Perioperative hypothermia and preoperative positive culture were independent predictors of a postoperative positive culture and this should be taken into consideration when managing these cases. Positive postoperative culture rates were higher than have previously been reported
The allometry of proboscis length in Melittidae (Hymenoptera: Apoidae) and an estimate of their foraging distance using museum collections
An appreciation of body size allometry is central for understanding insect pollination ecology. A recent model utilises allometric coefficients for five of the seven extant bee families (Apoidea: Anthophila) to include crucial but difficult-to-measure traits, such as proboscis length, in ecological and evolutionary studies. Melittidae were not included although they are important pollinators in South Africa where they comprise an especially rich and morphologically diverse fauna. We measured intertegular distance (correlated with body size) and proboscis length of 179 specimens of 11 species from three genera of Melittidae. With the inclusion of Melittidae, we tested the between family differences in the allometric scaling coefficients. AIC model selection was used to establish which factors provide the best estimate of proboscis length. We explored a hypothesis that has been proposed in the literature, but which has not been tested, whereby body and range sizes of bees are correlated with rainfall regions. We tested this by using body size measurements of 2109 museum specimens from 56 species of Melittidae and applied the model coefficients to estimate proboscis length and foraging distance. Our results show that with the addition of Melittidae, we retained the overall pattern of significant differences in the scaling coefficient among Apoidea, with our model explaining 98% of the variance in species-level means for proboscis length. When testing the relationship between body size and rainfall region we found no relationship for South African Melittidae. Overall, this study has added allometric scaling coefficients for an important bee family and shown the applicability of using these coefficients when linked with museum specimens to test ecological hypothesi
High-pressure structural study of the scheelite tungstates CaWO4 and SrWO4
Angle-dispersive x-ray diffraction (ADXRD) and x-ray absorption near edge
structure (XANES) measurements have been performed in the AWO4 tungstates CaWO4
and SrWO4 under high pressure up to approximately 20 GPa. Similar phase
transitions and phase transition pressures have been observed for both
tungstates using the two techniques in the studied pressure range. Both
materials are found to undergo a pressure-induced scheelite-to-fergusonite
phase transition under sufficiently hydrostatic conditions. Our results are
compared to those found previously in the literature and supported by ab initio
total energy calculations. From the total energy calculations we have also
predicted a second phase transition from the fergusonite structure to a new
structure identified as Cmca. Finally, a linear relationship between the charge
density in the AO8 polyhedra of ABO4 scheelite-related structures and the bulk
modulus is discussed and used to predict the bulk modulus of other materials,
like zircon.Comment: 52 pages, 9 figure, 4 table
- …