30 research outputs found
Roles of spatial scale and rarity on the relationship between butterfly species richness and human density in South Africa
Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2′ to 60′ across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation
CropPol: a dynamic, open and global database on crop pollination
This is the final version. Available from Wiley via the DOI in this record The original dataset (v1.1.0) of the CropPol database can be accessed from the ECOLOGY repository. Main upgrades of these datasets will be versioned and deposited in Zenodo (DOI: 10.5281/zenodo.5546600)Data availability. V.C. Computer programs and data-processing algorithms: The algorithms used in deriving, processing, or transforming data can be accessed in the DataS1.zip file and the Zenodo repository (DOI: 10.5281/zenodo.5546600). V.D. Archiving: The data is archived for long-term storage and access in Zenodo (DOI: 10.5281/zenodo.5546600)Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e. berry weight, number of fruits and kg per hectare, among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), Northern America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-05 (21 studies), 2006-10 (40), 2011-15 (88), and 2016-20 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA). This article is protected by copyright. All rights reserved.OBServ Projec
The role of environmental factors in promoting and limiting biological invasions in South Africa
CITATION: Wilson, J.R. et al. 2020. The role of environmental factors in promoting and limiting biological invasions in South Africa. In: Biological Invasions in South Africa. van Wilgen, B.W., Measey, J., Richardson, D.M., Wilson, J.R. and Zengeya, T.A. (eds.). Springer, Cham. pp. 355-385. doi:10.1007/978-3-030-32394-3_13The original publication is available at https://link.springer.com/book/10.1007/978-3-030-32394-3This chapter provides an overview of the researchers and research initiatives relevant to invasion science in South Africa over the past 130 years, profiling some of the more recent personalities, particularly those who are today regarded as international leaders in the field. A number of key points arise from this review. Since 1913, South Africa has been one of a few countries that have investigated and implemented alien plant biological control on a large scale, and is regarded as a leader in this field. South Africa was also prominent in the conceptualisation and execution of the international SCOPE project on the ecology of biological invasions in the 1980s, during which South African scientists established themselves as valuable contributors to the field. The development of invasion science benefitted from a deliberate strategy to promote multi-organisational, interdisciplinary research in the 1980s. Since 1995, the Working for Water programme has provided funding for research and a host of practical questions that required research solutions. Finally, the establishment of a national centre of excellence with a focus on biological invasions has made a considerable contribution to building human capacity in the field, resulting in advances in all aspects of invasion science—primarily in terms of biology and ecology, but also in history, sociology, economics and management. South Africa has punched well above its weight in developing the field of invasion science, possibly because of the remarkable biodiversity that provided a rich template on which to carry out research, and a small, well-connected research community that was encouraged to operate in a collaborative manner.https://link.springer.com/chapter/10.1007%2F978-3-030-32394-3_13Publisher’s versio