433 research outputs found

    Strain-based method for fatigue failure analysis of truss lattice structures: modeling and experimental setup

    Get PDF
    Lattice structures, as a subclass of cellular solids, are nowadays among the most promising materials when it comes to lightweight engineering: their excellent mechanical properties, together with their functionality and reduced mass, make them the perfect candidates for many applications in the aerospace and automotive fields. Such sectors require though demanding specifications for their components: among all, fatigue resistance is extremely important. A simplified method for the fatigue analysis of lattice structures, based on finite element method (FEM) is proposed: through linear homogenization of the lattice structure, a lighter FEM model employed for the fatigue failure analysis is developed. Second step of the model is the application of de-homogenization on the most critical cell and therefore the recovery of the true state of the lattice. In this investigation, the method is employed in the case of a 4-point bending cyclic load, together with the presentation of a validating experimental setup

    Sustainable Intervention for Health Promotion and Postural Control Improvement: Effects of Home-Based Oculomotor Training

    Get PDF
    Abstract: Currently, it is crucial to propose daily sustainable interventions that elicit healthy lifestyles and the promotion of favorable health outcomes beyond the usual medical prescriptions. Home confinement and pandemic limitations reduced physical activity and augmented sedentary behaviors that potentially also reflect on posture. Health-related quality of life includes an effective postural control which is affected by visual performance. Therefore, the aim of the study was to analyze the effects of a single session of eye exercises and also of a home-based oculomotor training on postural control. Thirty active adults (mean age: 42.9 ± 14.4 years) were randomly assigned to three experimental conditions: subjects were evaluated on a stabilometric platform before (T0) and immediately after (T1) a training session consisting in clockwise ocular movements (C1), counterclockwise (C2) and mixed condition (C3). All subjects repeated, at home, the same ocular training and were re-evaluated after 5 weeks (T2). All measured variables tended to improve after 5-week home training, but significative differences were found, especially in acute measurement. C1 and C2 conditions showed better results than C3. Thus, a specific oculomotor training, a cost free and self-administered training, can represent a practical tool to improve postural control and health-related quality of life in active adults

    Mitotic cell death induction by targeting the mitotic spindle with tubulin-inhibitory indole derivative molecules

    Get PDF
    Tubulin-targeting molecules are widely used cancer therapeutic agents. They inhibit microtubule-based structures, including the mitotic spindle, ultimately preventing cell division. The final fates of microtubule-inhibited cells are however often heterogeneous and difficult to predict. While recent work has provided insight into the cell response to inhibitors of microtubule dynamics (taxanes), the cell response to tubulin polymerization inhibitors remains less well characterized. Arylthioindoles (ATIs) are recently developed tubulin inhibitors. We previously identified ATI members that effectively inhibit tubulin polymerization in vitro and cancer cell growth in bulk cell viability assays. Here we characterise in depth the response of cancer cell lines to five selected ATIs. We find that all ATIs arrest mitotic progression, yet subsequently yield distinct cell fate profiles in time-lapse recording assays, indicating that molecules endowed with similar tubulin polymerization inhibitory activity in vitro can in fact display differential efficacy in living cells. Individual ATIs induce cytological phenotypes of increasing severity in terms of damage to the mitotic apparatus. That differentially triggers MCL-1 down-regulation and caspase-3 activation, and underlies the terminal fate of treated cells. Collectively, these results contribute to define the cell response to tubulin inhibitors and pinpoint potentially valuable molecules that can increase the molecular diversity of tubulin-targeting agents

    In vitro characterisation of a pleconaril/pirodavir-like compound with potent activity against rhinoviruses

    Get PDF
    Abstract BACKGROUND: Rhinovirus infections do not only cause common colds, but may also trigger severe exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Even though rhinoviruses have been the focus of extensive drug development efforts in the past, an anti-rhinoviral drug still has to make it to the market. In the past, the viral capsid protein VP1 has been shown to be an important target for the development of antiviral molecules. Furthermore, many different chemical scaffolds appear to possess the properties that are required to inhibit virus replication by this mechanism of action. I-6602, an analogue of the rhinovirus inhibitor pirodavir, was previously identified as a potent inhibitor of rhinovirus infection. Here, we describe the antiviral activity of its analogue ca603, a molecule with a modified linker structure, and corroborate its mechanism of action as a capsid binder. FINDINGS: The molecule ca603 shows antiviral activity against a panel of rhino-and enteroviruses. Cross-resistance is observed against viruses with mutations that render them resistant to the inhibitory effect of the capsid binder pleconaril and thermostability assays demonstrate that the compound binds and stabilizes the viral capsid. Binding of the molecule to the VP1 protein is corroborated by in silico modeling. CONCLUSIONS: It is confirmed that ca603 inhibits rhinovirus replication by interaction with the VP1 protein and, by this, allows to further expand the chemical diversity of capsid-binding molecules

    Structure-based virtual screening to get new scaffold inhibitors of the Ser/Thr protein kinase PknB from mycobacterium tuberculosis

    Get PDF
    In search of new inhibitors of the Ser/Thr protein kinase PknB from Mycobacterium tuberculosis we carried out a structure-based virtual screening study to identify ATP-competitive inhibitors of this enzyme. These studies point out that N-phenylmethylindole-2-carboxamide is a promising scaffold for the development of new PknB inhibitors. We synthesized a small set of analogue compounds to assess the pharmacophore structural requirements and to optimize the inhibitory activity against PknB. This strategy led to the identification of compound 3, endowed with an IC50 of 20 μM, which provides a novel scaffold for further improvement of PknB inhibitors

    Modeling Epac1 interactions with the allosteric inhibitor AM-001 by co-solvent molecular dynamics

    Get PDF
    The exchange proteins activated by cAMP (EPAC) are implicated in a large variety of physiological processes and they are considered as promising targets for a wide range of therapeutic applications. Several recent reports provided evidence for the therapeutic effectiveness of the inhibiting EPAC1 activity cardiac diseases. In that context, we recently characterized a selective EPAC1 antagonist named AM-001. This compound was featured by a non-competitive mechanism of action but the localization of its allosteric site to EPAC1 structure has yet to be investigated. Therefore, we performed cosolvent molecular dynamics with the aim to identify a suitable allosteric binding site. Then, the docking and molecular dynamics were used to determine the binding of the AM-001 to the regions highlighted by cosolvent molecular dynamics for EPAC1. These analyses led us to the identification of a suitable allosteric AM-001 binding pocket at EPAC1. As a model validation, we also evaluated the binding poses of the available AM-001 analogues, with a different biological potency. Finally, the complex EPAC1 with AM-001 bound at the putative allosteric site was further refined by molecular dynamics. The principal component analysis led us to identify the protein motion that resulted in an inactive like conformation upon the allosteric inhibitor binding

    Combination of antibodies directed against different ErbB3 surface epitopes prevents the establishment of resistance to BRAF/MEK inhibitors in melanoma

    Get PDF
    Patients with metastatic melanoma bearing V600 mutations in BRAF oncogene clinically benefit from the treatment with BRAF inhibitors alone or in combination with MEK inhibitors. However, a limitation to such treatment is the occurrence of resistance. Tackling the adaptive changes helping cells survive from drug treatment may offer new therapeutic opportunities. Very recently the ErbB3 receptor has been shown to act as a central node promoting survival of BRAF mutated melanoma. In this paper we first demonstrate that ErbB3/AKT hyperphosphorylation occurs in BRAF mutated melanoma cell lines following exposure to BRAF and/or MEK inhibitors. This strongly correlates with increased transcriptional activation of its ligand neuregulin. Anti-ErbB3 antibodies impair the establishment of de novo cell resistance to BRAF inhibition in vitro. In order to more potently ablate ErbB3 activity we used a combination of two anti-ErbB3 antibodies directed against distinct epitopes of its extracellular domain. These two antibodies in combo with BRAF/MEK inhibitors potently inhibit in vitro cell growth and tumor regrowth after drug withdrawal in an in vivo xenograft model. Importantly, residual tumor masses from mice treated by the antibodies and BRAF/ERK inhibitors combo are characterized almost exclusively by large necrotic areas with limited residual areas of tumor growth. Taken together, our findings support the concept that triple therapy directed against BRAF/MEK/ErbB3 may be able to provide durable control of BRAF mutated metastatic melanoma

    Indolyl aryl sulphones as HIV-1 non-nucleoside reverse transcriptase inhibitors: synthesis, biological evaluation and binding mode studies of new derivatives at indole-2-carboxamide.

    Get PDF
    New non-nucleoside reverse transcriptase inhibitors (NNRTIs) that are active against the commonly occurring mutations of HIV are urgently needed for the treatment of AIDS. We synthesized new NNRTIs of the indolyl aryl sulphone (IAS) family, which are endowed with high antiviral potency against HIV-1 wt (wild-type), and the Y181C and K103N-Y181C drug resistant mutant strains. Several new compounds were highly active in lymphocytes infected with primary isolates carrying the K103N-V108I-M184V and L100I-V108I mutations. The design of new IASs was based on three-dimensional quantitative structure-activity relationship (3D QSAR) studies and docking simulations. A cross-docking study was also undertaken to gain some insights in to the binding mode of the newly synthesized IASs in the wt and mutated isoforms of reverse transcriptase
    • …
    corecore