156 research outputs found

    Immunohistochemical Analysis of Myenteric Ganglia and Interstitial Cells of Cajal in Ulcerative Colitis

    Get PDF
    Ulcerative colitis (UC) is an inflammatory bowel disease with alterations of colonic motility, which influence clinical symptoms. Although morpho-functional abnormalities in the enteric nervous system have been suggested, in UC patients scarce attention has been paid to possible changes in the cells that control colonic motility, including myenteric neurons, glial cells, and interstitial cells of Cajal (ICC). This study evaluated the neural-glial components of myenteric ganglia and ICC in the colonic neuromuscular compartment of UC patients by quantitative immunohistochemical analysis. Full-thickness archival samples of the left colon were collected from 10 patients with UC (5 M, 5 F; age range, 45-62 years) who underwent elective bowel resection. The colonic neuromuscular compartment was evaluated immunohistochemically in paraffin cross-sections. The distribution and number of neurons, glial cells and ICC were assessed by anti-HuC/D, -S100β and -c-Kit antibodies, respectively. Data were compared with findings on archival samples of normal left colon from 10 sex- and age-matched control patients, who underwent surgery for uncomplicated colon cancer. Compared to controls, patients with UC showed: (a) reduced density of myenteric HuC/D-positive neurons and S100β-positive glial cells, with a loss over 61% and 38%, respectively, and increased glial cell/neuron ratio; (b) ICC decrease in the whole neuromuscular compartment. The quantitative variations of myenteric neuro-glial cells and ICC indicate considerable alterations of the colonic neuromuscular compartment in the setting of mucosal inflammation associated with UC, and provide a morphological basis for better understanding the motor abnormalities often observed in UC patients

    A relative value method for measuring and evaluating cardiac reserve

    Get PDF
    BACKGROUND: Although a very close relationship between the amplitude of the first heart sound (S1) and the cardiac contractility have been proven by previous studies, the absolute value of S1 can not be applied for evaluating cardiac contractility. However, we were able to devise some indicators with relative values for evaluating cardiac function. METHODS: Tests were carried out on a varied group of volunteers. Four indicators were devised: (1) the increase of the amplitude of the first heart sound after accomplishing different exercise workloads, with respect to the amplitude of the first heart sound (S1)recorded at rest was defined as cardiac contractility change trend (CCCT). When the subjects completed the entire designed exercise workload (7000 J), the resulting CCCT was defined as CCCT(1); when only 1/4 of the designed exercise workload was completed, the result was defined as CCCT(1/4). (2) The ratio of S1 amplitude to S2 amplitude (S1/S2). (3) The ratio of S1 amplitude at tricuspid valve auscultation area to that at mitral auscultation area T1/M1 (4) the ratio of diastolic to systolic duration (D/S). Data were expressed as mean ± SD. RESULTS: CCCT(1/4) was 6.36 ± 3.01 (n = 67), CCCT(1) was 10.36 ± 4.2 (n = 33), S1/S2 was1.89 ± 0.94 (n = 140), T1/M1 was 1.44 ± 0.99 (n = 144), and D/S was 1.68 ± 0.27 (n = 172). CONCLUSIONS: Using indicators CCCT(1/4) and CCCT(1) may be beneficial for evaluating cardiac contractility and cardiac reserve mobilization level, S1/S2 for considering the factor for hypotension, T1/M1 for evaluating the right heart load, and D/S for evaluating diastolic cardiac blood perfusion time

    Features of Idebenone and Related Short-Chain Quinones that Rescue ATP Levels under Conditions of Impaired Mitochondrial Complex I

    Get PDF
    Short-chain quinones have been investigated as therapeutic molecules due to their ability to modulate cellular redox reactions, mitochondrial electron transfer and oxidative stress, which are pathologically altered in many mitochondrial and neuromuscular disorders. Recently, we and others described that certain short-chain quinones are able to bypass a deficiency in complex I by shuttling electrons directly from the cytoplasm to complex III of the mitochondrial respiratory chain to produce ATP. Although this energy rescue activity is highly interesting for the therapy of disorders associated with complex I dysfunction, no structure-activity-relationship has been reported for short-chain quinones so far. Using a panel of 70 quinones, we observed that the capacity for this cellular energy rescue as well as their effect on lipid peroxidation was influenced more by the physicochemical properties (in particular logD) of the whole molecule than the quinone moiety itself. Thus, the observed correlations allow us to explain the differential biological activities and therapeutic potential of short-chain quinones for the therapy of disorders associated with mitochondrial complex I dysfunction and/or oxidative stress

    Clinicopathological features and outcome in advanced colorectal cancer patients with synchronous vs metachronous metastases

    Get PDF
    Contains fulltext : 88999.pdf (publisher's version ) (Open Access)BACKGROUND: Synchronous metastases of colorectal cancer (CRC) are considered to be of worse prognostic value compared with metachronous metastases, but only few and conflicting data have been reported on this issue. METHODS: We retrospectively investigated patient demographics, primary tumour characteristics and overall survival (OS) in 550 advanced CRC patients with metachronous vs synchronous metastases, who participated in the phase III CAIRO study. For this purpose only patients with a prior resection of the primary tumour were considered. RESULTS: The clinical and pathological characteristics associated with poor prognosis that we observed more often in patients with synchronous metastases (n=280) concerned an abnormal serum lactate dehydrogenase (LDH) concentration (P=0.01), a worse WHO performance status (P=0.02), primary tumour localisation in the colon (P=0.002) and a higher T stage (P=0.0006). No significant difference in median OS was observed between patients with synchronous metastases and metachronous metastases (17.6 vs 18.5 months, respectively, P=0.24). CONCLUSION: Despite unfavourable clinicopathological features in patients with synchronous metastases with a resected primary tumour compared to patients with metachronous metastases, no difference in the median OS was observed. Possible explanations include a (partial) chemoresistance in patients with metachronous disease because of previous adjuvant treatment, whereas differences between the two groups in screening procedures resulting in a lead time bias to diagnosis or in prognostic molecular markers remain speculative

    GDNF Selectively Induces Microglial Activation and Neuronal Survival in CA1/CA3 Hippocampal Regions Exposed to NMDA Insult through Ret/ERK Signalling

    Get PDF
    The glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for several neuronal populations in different brain regions, including the hippocampus. However, no information is available on the: (1) hippocampal subregions involved in the GDNF-neuroprotective actions upon excitotoxicity, (2) identity of GDNF-responsive hippocampal cells, (3) transduction pathways involved in the GDNF-mediated neuroprotection in the hippocampus. We addressed these questions in organotypic hippocampal slices exposed to GDNF in presence of N-methyl-D-aspartate (NMDA) by immunoblotting, immunohistochemistry, and confocal analysis. In hippocampal slices GDNF acts through the activation of the tyrosine kinase receptor, Ret, without involving the NCAM-mediated pathway. Both Ret and ERK phosphorylation mainly occurred in the CA3 region where the two activated proteins co-localized. GDNF protected in a greater extent CA3 rather than CA1 following NMDA exposure. This neuroprotective effect targeted preferentially neurons, as assessed by NeuN staining. GDNF neuroprotection was associated with a significant increase of Ret phosphorylation in both CA3 and CA1. Interestingly, confocal images revealed that upon NMDA exposure, Ret activation occurred in microglial cells in the CA3 and CA1 following GDNF exposure. Collectively, this study shows that CA3 and CA1 hippocampal regions are highly responsive to GDNF-induced Ret activation and neuroprotection, and suggest that, upon excitotoxicity, such neuroprotection involves a GDNF modulation of microglial cell activity

    Chitosan–Starch–Keratin composites: Improving thermo-mechanical and degradation properties through chemical modification

    Get PDF
    The lysozyme test shows an improved in the degradability rate, the weight loss of the films at 21 days is reduced from 73 % for chitosan-starch matrix up to 16 % for the composites with 5wt% of quill; but all films show a biodegradable character depending on keratin type and chemical modification. The outstanding properties related to the addition of treated keratin materials show that these natural composites are a remarkable alternative to potentiat-ing chitosan–starch films with sustainable featuresChitosan–starch polymers are reinforced with different keratin materials obtained from chicken feather. Keratin materials are treated with sodium hydroxide; the modified surfaces are rougher in comparison with untreated surfaces, observed by Scanning Electron Microscopy. The results obtained by Differential Scanning Calorimetry show an increase in the endothermic peak related to water evaporation of the films from 92 °C (matrix) up to 102–114 °C (reinforced composites). Glass transition temperature increases from 126 °C in the polymer matrix up to 170–200 °C for the composites. Additionally, the storage modulus in the composites is enhanced up to 1614 % for the composites with modified ground quill, 2522 % for composites with modified long fiber and 3206 % for the composites with modified short fiber. The lysozyme test shows an improved in the degradability rate, the weight loss of the films at 21 days is reduced from 73 % for chitosan-starch matrix up to 16 % for the composites with 5wt% of quill; but all films show a biodegradable character depending on keratin type and chemical modification. The outstanding properties related to the addition of treated keratin materials show that these natural composites are a remarkable alternative to potentiat-ing chitosan–starch films with sustainable featuresUniversidad Autónoma del Estado de México Tecnológico Nacional de México, Instituto Tecnológico de Querétaro Universidad Nacional Autónoma de México Tecnológico Nacional de México, Instituto Tecnológico de Celaya Universidad Autónoma de Cd. Juáre

    Vasodilators in the treatment of acute heart failure: what we know, what we don’t

    Get PDF
    Although we have recently witnessed substantial progress in management and outcome of patients with chronic heart failure, acute heart failure (AHF) management and outcome have not changed over almost a generation. Vasodilators are one of the cornerstones of AHF management; however, to a large extent, none of those currently used has been examined by large, placebo-controlled, non-hemodynamic monitored, prospective randomized studies powered to assess the effects on outcomes, in addition to symptoms. In this article, we will discuss the role of vasodilators in AHF trying to point out which are the potentially best indications to their administration and which are the pitfalls which may be associated with their use. Unfortunately, most of this discussion is only partially evidence based due to lack of appropriate clinical trials. In general, we believe that vasodilators should be administered early to AHF patients with normal or high blood pressure (BP) at presentation. They should not be administered to patients with low BP since they may cause hypotension and hypoperfusion of vital organs, leading to renal and/or myocardial damage which may further worsen patients’ outcome. It is not clear whether vasodilators have a role in either patients with borderline BP at presentation (i.e., low-normal) or beyond the first 1–2 days from presentation. Given the limitations of the currently available clinical trial data, we cannot recommend any specific agent as first line therapy, although nitrates in different formulations are still the most widely used in clinical practice
    corecore