490 research outputs found

    A quantitative approach for evaluating lava flow simulation reliability: the LavaSIM code applied to the 2001 Etna’s eruption

    Get PDF
    Many numerical codes have been developed to simulate the emplacement of lava flows for evaluating their possible evolutions and for defining, by a statistical approach, hazard maps useful for risk assessment and land planning. Although many examples of lava flow simulation can be found in literature, just a few of them attempted to quantify the correspondence between observed and simulated flows, nevertheless this is a crucial point especially if the codes are applied in real-time for risk managing. The aim of this work was to define a methodology to quantitatively evaluate the reliability of simulation codes. In particular, it applied the LavaSIM code (Hidaka et al., 2005) to simulate the main lava flow emplaced on the South flank of Mt. Etna (Italy) between 18 July and 9 August 2001 which represents an ideal test case for validating numerical codes (Coltelli et al., 2007). It is a single flow both for its geometry and its temporal evolution and, many data are available to be used as input of the simulations (lava composition, pre- and post-eruption topographies, final flow volume and thickness and temporal evolution of average volumetric flow rates) and for checking their results (2D temporal evolution). LavaSIM is the only full 3D model, thus able to account for the vertical variation of lava properties (temperature, viscosity, velocity and liquidus or solidus state). It is based on the 3D solution of the Navier-Stokes and the energy conservation equations and provides the most complete description of the lava cooling by considering radiation, conduction and convection. Its greatest peculiarity is to take into account crust formation by evaluating the enthalpy of every cell and by adopting an empiric threshold parameter (the solidification fraction of liquidity loss) to discriminate liquid and solid cells. Different values of input parameters (viscosity, solidification fraction of liquidity loss, eruptive enthalpy and lava emissivity) have been adopted for evaluating their influence on the simulated lava distribution and cooling. A simulation with constant lava discharge, averaged on the whole eruption, was also run for checking how the feeding affects the lava spreading and cooling. The results were first analyzed by comparing the planar expansions of real and simulated flows. A quantitative analysis was then carried out adopting two parameters for constraining both the lengthening and the planar expansion. For quantitatively verifying the correspondence between simulated and observed lengths, the Percent Length Ratio (PLR) was defined as the percentage ratio between simulated and observed lengths measured along the main flow direction. The second control parameter was the fitness function (e1) defined by Spataro et al. (2004) as the square root of the ratio between the intersection and the union of real and simulated areas. Since the e1 factor allows quantifying the simulated lateral spreading while PLR the flow lengthening, it is important to jointly analyze these two parameters. This work showed that by combining the fitness function of Spataro et al. (2004) with the Percent Length Ratio, here defined, it is possible to constrain both the lateral spreading (by e1) and the flow lengthening (by the PLR). The analysis here presented also demonstrated the capability of the LavaSIM simulation code to account for the vertical variation of the lava properties and to simulate the crust formation

    Etna International Training School of Geochemistry. Science meets Practice

    Get PDF
    Also this year, the “Etna International Training School of Geochemistry. Science meets practice” took place at Mt. Etna, now in its fourth edition. The school was hosted in the historical Volcanological Observatory “Pizzi Deneri”, one of the most important sites of the INGV - Osservatorio Etneo for geochemical and geophysical monitoring. Mount Etna, located in eastern Sicily, is the largest active volcano in Europe and one of the most intensely degassing volcanoes of the world [Allard et al., 1991; Gerlach, 1991]. Mt Etna emits about 1.6 % of global H2O fluxes from arc volcanism [Aiuppa et al., 2008] and 10 % of global average volcanic emission of CO2 and SO2 [D’Alessandro et al., 1997; Caltabiano et al., 2004; Aiuppa et al., 2008; Carn et al., 2017]. Furthermore, Gauthier and Le Cloarec, [1998] underscored that Mt. Etna is an important source of volcanic particles, having a mass flux of particle passively released from the volcano during non-eruptive period estimated between 7 to 23 tons/day [Martin et al., 2008; Calabrese et al., 2011]. In general, Etna is considered to be still under evolution and rather ‘friendly’, which, along with the above, makes it a favorable natural laboratory to study volcanic geochemistry. The Observatory Pizzi Deneri was sponsored by Haroun Tazieff, and it was built in 1978 by the CNR - International Institute of Volcanology under the direction of Prof. Letterio Villari. It is located at the base of the North-East crater (2,850 m a.s.l.), near the Valle del Leone and it was built on the rim of the Ellittico caldera. A picturesque building, consisting of two characteristics domes in front of the breath-taking panorama of the summit craters. Even though it is quite spartan as an accommodation facility, the dormitories, kitchen, seminar room and laboratory are well equipped. In other words, the Pizzi Deneri observatory is a unique place close to the top of the most active volcano of Europe. The observatory lies in a strategic location making it one of the most important sites for monitoring, research and dissemination of the scientific culture. After six field multidisciplinary campaigns (2010-2015) organized by a group of researchers of several institutions (INGV of Palermo, Catania, Naples, Bologna; Universities of Palermo, Florence, Mainz, Heidelberg), the idea of sharing and passing on the experience to the new generation of students has materialized, and the “Etna International Training School of Geochemistry. Science meets practice” was born in 2016. The four editions of the school were partially funded by INGV of Palermo and Catania, European Geoscience Union (EGU), Società Geochimica Italiana (SoGeI) and Associazione Naturalistica Geode. The conceptual idea of the school is to share scientific knowledge and experiences in the geochemical community, using local resources with a low-cost organization in order to allow as many students as possible access to the school. The “Etna International Training School of Geochemistry. Science meets practice” is addressed to senior graduate students, postdoctoral researchers, fellows, and newly appointed assistant professors, aiming to bring together the next generation of researchers active in studies concerning the geochemistry and the budget of volcanic gases. Introduce the participants with innovative direct sampling and remote sensing techniques. Furthermore, it gives young scientists an opportunity to experiment and evaluate new protocols and techniques to be used on volcanic fluid emissions covering a broad variety of methods. The teaching approach includes theoretical sessions (lectures), practical demonstrations and field applications, conducted by international recognized geochemists. We thank all the teachers who helped to make the school possible, among these: Tobias Fischer (University of New Mexico Albuquerque), Jens Fiebig (Institut für Geowissenschaften Goethe-Universität Frankfurt am Main), Andri Stefansson (University of Iceland, Institute of Earth Sciences), Mike Burton (University of Manchester), Nicole Bobrowski (Universität Heidelberg Institute of Environmental Physics and Max Planck Institute for Chemistry), Alessandro Aiuppa (Università di Palermo), Franco Tassi (Università di Firenze), Walter D’Alessandro (INGV of Palermo), Fatima Viveiros (University of the Azores). Direct sampling of high-to-low temperature fumaroles, plume measurement techniques (using CO2/SO2 sensors such as Multi-GAS instruments, MAX-DOAS instruments and UV SO2 cameras, alkaline traps and particle filters), measurement of diffuse soil gas fluxes of endogenous gases (CO2, Hg0, CH4 and light hydrocarbons), sampling of mud volcanoes, groundwaters and bubbling gases. Sampling sites include the active summit craters, eruptive fractures and peripheral areas. The students have shown an active participation both to the lessons and the fieldworks. Most of them describe the school as formative and useful experience for their future researches. Their enthusiasm is the real engine of this school

    On-line image analysis of explosive activity captured by surveillance cameras allows major eruptive events forecasting

    Get PDF
    The use of stationary remote cameras for visual monitoring of the eruptive activity was implemented in the monitoring system of Etna and Stromboli volcanoes since 1993 and 1994 respectively. Camera records of eruptive activity became the major information source for describing eruptive phenomena occurred at Etna and Stromboli in the last years. However, the main goal of the continuous visual monitoring of active basaltic volcanoes is to analyze eruptive activity images in search of precursors of the paroxysmal events that suddenly interrupt the persistent mild strombolian activity. Stromboli represent the perfect test site for this investigation because its typical activity consists of intermittent mild explosions lasting a few seconds, which take place at different vents and at variable intervals. However, the routine activity can be interrupted by more violent, paroxysmal explosions, that eject m-sized scoriaceous bombs and lava blocks to a distance of several hundreds of meters from the craters, endangering the numerous tourists that watch the spectacular activity from the volcano's summit located about two hundreds meters from the active vents. Using image analysis we identified any change of the explosive activity trend that preceded a particular eruptive event, like paroxysmal explosions, fire fountains and lava flows. The analysis include the counting of the explosions occurred at the different craters and the parameterization in classes of intensity for each explosion on the base of tephra dispersion and kinetics energy. From September 2001 an on-line image analyzer called VAMOS (Volcanic Activity MOnitoring System) operates detection and classification of explosive events in quasi real-time. The system has automatically recorded and analyzed the change in the energetic trend that preceded the 20 October 2001 paroxysmal explosion that killed a woman and the strong explosive activity that preceded the onset of 28 December 2002 lava flow and landslide forming eruption

    Etna International Training School of Geochemistry. Science meets Practice

    Get PDF
    Also this year, the \u201cEtna International Training School of Geochemistry. Science meets practice\u201d took place at Mt. Etna, now in its fourth edition. The school was hosted in the historical Volcanological Observatory \u201cPizzi Deneri\u201d, one of the most important sites of the INGV - Osservatorio Etneo for geochemical and geophysical monitoring. Mount Etna, located in eastern Sicily, is the largest active volcano in Europe and one of the most intensely degassing volcanoes of the world [Allard et al., 1991; Gerlach, 1991]. Mt Etna emits about 1.6 % of global H2O fluxes from arc volcanism [Aiuppa et al., 2008] and 10 % of global average volcanic emission of CO2 and SO2 [D\u2019Alessandro et al., 1997; Caltabiano et al., 2004; Aiuppa et al., 2008; Carn et al., 2017]. Furthermore, Gauthier and Le Cloarec, [1998] underscored that Mt. Etna is an important source of volcanic particles, having a mass flux of particle passively released from the volcano during non-eruptive period estimated between 7 to 23 tons/day [Martin et al., 2008; Calabrese et al., 2011]. In general, Etna is considered to be still under evolution and rather \u2018friendly\u2019, which, along with the above, makes it a favorable natural laboratory to study volcanic geochemistry. The Observatory Pizzi Deneri was sponsored by Haroun Tazieff, and it was built in 1978 by the CNR - International Institute of Volcanology under the direction of Prof. Letterio Villari. It is located at the base of the North-East crater (2,850 m a.s.l.), near the Valle del Leone and it was built on the rim of the Ellittico caldera. A picturesque building, consisting of two characteristics domes in front of the breath-taking panorama of the summit craters. Even though it is quite spartan as an accommodation facility, the dormitories, kitchen, seminar room and laboratory are well equipped. In other words, the Pizzi Deneri observatory is a unique place close to the top of the most active volcano of Europe. The observatory lies in a strategic location making it one of the most important sites for monitoring, research and dissemination of the scientific culture. After six field multidisciplinary campaigns (2010-2015) organized by a group of researchers of several institutions (INGV of Palermo, Catania, Naples, Bologna; Universities of Palermo, Florence, Mainz, Heidelberg), the idea of sharing and passing on the experience to the new generation of students has materialized, and the \u201cEtna International Training School of Geochemistry. Science meets practice\u201d was born in 2016. The four editions of the school were partially funded by INGV of Palermo and Catania, European Geoscience Union (EGU), Societ\ue0 Geochimica Italiana (SoGeI) and Associazione Naturalistica Geode. The conceptual idea of the school is to share scientific knowledge and experiences in the geochemical community, using local resources with a low-cost organization in order to allow as many students as possible access to the school. The \u201cEtna International Training School of Geochemistry. Science meets practice\u201d is addressed to senior graduate students, postdoctoral researchers, fellows, and newly appointed assistant professors, aiming to bring together the next generation of researchers active in studies concerning the geochemistry and the budget of volcanic gases. Introduce the participants with innovative direct sampling and remote sensing techniques. Furthermore, it gives young scientists an opportunity to experiment and evaluate new protocols and techniques to be used on volcanic fluid emissions covering a broad variety of methods. The teaching approach includes theoretical sessions (lectures), practical demonstrations and field applications, conducted by international recognized geochemists. We thank all the teachers who helped to make the school possible, among these: Tobias Fischer (University of New Mexico Albuquerque), Jens Fiebig (Institut f\ufcr Geowissenschaften Goethe-Universit\ue4t Frankfurt am Main), Andri Stefansson (University of Iceland, Institute of Earth Sciences), Mike Burton (University of Manchester), Nicole Bobrowski (Universit\ue4t Heidelberg Institute of Environmental Physics and Max Planck Institute for Chemistry), Alessandro Aiuppa (Universit\ue0 di Palermo), Franco Tassi (Universit\ue0 di Firenze), Walter D\u2019Alessandro (INGV of Palermo), Fatima Viveiros (University of the Azores). Direct sampling of high-to-low temperature fumaroles, plume measurement techniques (using CO2/SO2 sensors such as Multi-GAS instruments, MAX-DOAS instruments and UV SO2 cameras, alkaline traps and particle filters), measurement of diffuse soil gas fluxes of endogenous gases (CO2, Hg0, CH4 and light hydrocarbons), sampling of mud volcanoes, groundwaters and bubbling gases. Sampling sites include the active summit craters, eruptive fractures and peripheral areas. The students have shown an active participation both to the lessons and the fieldworks. Most of them describe the school as formative and useful experience for their future researches. Their enthusiasm is the real engine of this school

    Contraepifanía de la cara. El trauma de la guerra en el cuento poético de Giorgio Caproni

    Get PDF
    El ensayo propone la lectura de la obra poética de Giorgio Caproni (1912-1990) –publicada entre 1956 y su muerte– como si se tratase de un único cancionero perpetuo, centrado en la presencia recursiva de algunos temas y motivos específicos. Todo ellos, como el «viento», la «página del periódico» o el «rostro», tienen que ver con la guerra y con su traumático recuerdo en el yo poético. Más particularmente, el tema del «rostro» es utilizado asiduamente por Caproni, hasta covertirlo en emblema central de ese cancionero perpetuo. Siguiendo la reflexión del filósofo francés Emmanuel Lévinas, si el rostro es el modo en el cual el otro se presenta ante nosotros como semejante (ser humano) y en su diversidad (algo diferente a nosotros), se convierte por ello en el símbolo de la ruptura traumática del contínuo temporal del antes y el después de la guera, ante la evidente imposibilidad de construir una comunidad a partir del reconocimiento del «otro».This essay proposes an interpretation of the poetical works Giorgio Caproni (1912-1990) published from 1956 to his death as an only and coherent «perpetual canzoniere» based on the recursive presence of some specifical themes and motives. All of these (the «wind», the «newspaper’s page», the «face») are referred to the war and its traumatical effect on the lyrical I. In particular, Caproni appears to use the «face»-theme as a kind of basic «emblem» of his perpetual canzoniere: if, according to the French philosopher Emmanuel Lévinas, the face is the way the «other» presents himself to us in his similarity (as a human being like us) and in his difference (as an individual differing from all other individuals), in Caproni’s poetical works the face becomes the sign of the traumatical brake in the temporal continuity before and after the war, and, consequently, the sign of the impossibility to form a community acknowledging the existence of the «other

    Studio della correlazione tra il tremore vulcanico e l’attività esplosiva dell’Etna nel Gennaio - Febbraio 1999 mediante il sistema VoTA (Volcanic Tremor Analyzer)

    Get PDF
    Il seguente lavoro presenta lo studio della correlazione tra il tremore vulcanico e l'attività esplosiva dell'Etna nel gennaio-febbraio 1999 effettuato mediante l’implementazione e lo sviluppo del sistema automatico per l’analisi e la visualizzazione del tremore vulcanico VoTA (Volcanic Tremor Analizer). In particolare, sono stati presi in considerazione cinque episodi eruttivi significativi dell’attività dell’Etna durante i quali il VoTA ha effettuato un’analisi on line del tremore vulcanico. Successivamente, tali dati sono stati confrontati con le immagini dell’attività eruttiva riprese dalla telecamera di sorveglianza dell’Etna, permettendo di ricavare delle correlazioni tra le diverse fasi dell’attività esplosiva ed i corrispondenti valori del tremore vulcanico

    The Graham Bank: hydrographic features and safety of navigation

    Get PDF
    To ensure safety of navigation, the monitoring of high-risk seabed areas is one of the primary tasks of the hydrographic activity. Monitoring of these areas also provides insights into environmental and scientific applications. The Graham Bank (Strait of Sicily in the Mediterranean Sea) has been monitored by the Italian Hydrographic Institute (IIM) for over a century. This article describes the IIM monitoring of the Graham Bank by conducting surveys using techniques and technologies available at each time and integrating all of the data into a modern bathymetric database. Based on the outcomes of this case study, the IIM proposes ways to minimize the risk to vessels passing close to the Graham Bank.Para garantizar la seguridad de la navegación, la supervisión de las zonas de los fondos marinos de alto riesgo es una de las tareas principales de la actividad hidrográfica. La supervisión de estas áreas también proporciona percepciones relativas a las aplicaciones ambientales y científicas. El Banco Graham (Estrecho de Sicilia en el mar Mediterráneo) ha sido supervisado por el Instituto Hidrográfico Italiano (IIM) durante más de un siglo. Este artículo describe la supervisión por parte del IIM del Banco Graham mediante la realización de levantamientos, utilizando las técnicas y tecnologías dispnibles en cada momento e integrando todos los datos en una base de datos batimétricos moderna. Basándose en los resultados de este estudio de caso, el IIM propone modos de minimizar el riesgo para los buques que pasan cerca del Banco Graham.Afin d'assurer la sécurité de la navigation, la surveillance des zones de fonds marins à haut risque est l'une des tâches principales de l'activité hydrographique. Surveiller ces zones permet également d'avoir un aperçu des enjeux environnementaux et scientifiques. Le Banc de Graham (Canal de Sicile, Mer Méditerranée) est surveillé par le Service hydrographique italien (IIM) depuis plus d'un siècle. Cet article décrit la surveillance du Banc de Graham par l'IIM qui s'appuie sur des levés effectués à l'aide des différentes techniques et technologies disponibles à chaque époque et sur l'intégration de toutes les données dans une base de données bathymétriques moderne. Sur la base des résultats de cette étude de cas, l'IIM propose des solutions afin de minimiser les risques pour des navires qui croisent à proximité du Banc de Graham

    Video monitoring of the persistent strombolian activity of Stromboli volcano represents a window on its plumbing system and an opportunity for understanding the eruptive processes

    Get PDF
    Since 1994 a video-surveillance camera located on a peak just above the active volcanic vents of Stromboli island records the explosive activity of one of the few volcanoes on the world performing a persistent eruptive activity. From 2003, after one of the larger lava flow eruption of the last century, the video- surveillance system was enhanced with more stations having both thermal and visual cameras. The video-surveillance helps volcanologists to characterize the mild explosive activity of Stromboli named Strombolian and to distinguish between the frequent “ordinary” Strombolian explosions and the occasional “extraordinary” strong Strombolian explosions that periodically occur. A new class of extraordinary explosions was discovered filling the gap between the ordinary activity and the strong explosions named major explosions when the tephra fallout covers large areas on the volcano summit and paroxysmal ones when the bombs fall down to the inhabited area along the coast of the island. In order to quantify the trend of the ordinary Strombolian explosions and to understand the occurring of the extraordinary strong Strombolian explosions a computer assisted image analysis was developed to process the huge amount of thermal and visual images recorded in several years. The results of this complex analysis allow us to clarify the processes occurring in the upper plumbing system where the pockets/trains of bubbles coalesce and move into the active vent conduits producing the ordinary Strombolian activity, and to infer the process into the deeper part of the plumbing system where new magma supply and its evolution lead to the formation of the extraordinary strong Strombolian explosions
    corecore