132 research outputs found

    A Measurement Tool for Investigating Cooling Lava Properties

    Get PDF
    This paper presents the development and uncertainty characterization of a system for the direct measurement of heat transfer in cooling lava. The system continuously measures the parameters involved in the cooling process and, particularly, in the formation of the crust. The aim is to allow the future development of a physical model of the cooling process itself. In order to realize a system that will be effective in such a hostile environment, the principles on which the instruments for radiation thermometry are based have been thoroughly investigated. A virtual instrument has been developed, interfacing the measuring system and the user, processing the incoming data, and producing an estimate of the uncertainty of the measurement chain. The various sources of uncertainty have been taken into account to produce an accurate estimate of the uncertainty associated with the measured data. The results of experimental tests are presented

    Natural Polymers and Cosmeceuticals for a Healthy and Circular Life: The Examples of Chitin, Chitosan, and Lignin

    Get PDF
    The present review considers the design and introduction of new cosmeceuticals in the market, based on natural polymers and active molecules extracted from biomass, in a biomimetic strategy, starting with a consideration of the biochemical mechanisms, followed by natural precision biopolymer production. After introducing the contest of nanobiotechnology in relationship with its applicability for skin contact products and classifying the currently available sustainable polymers, some widely selected abundant biopolymers (chitin, chitosan, and lignin), showing specific functionalities (anti-microbial, anti-oxidant, anti-inflammatory, etc.), are described, especially considering the possibility to combine them in nanostructured tissues, powders, and coatings for producing new cosmeceuticals, but with potentialities in other sectors, such as biomedical, personal care, and packaging sectors. After observing the general increase in market wellness and beauty forecasts over the next few years, parallelisms between nano and macro scales have suggested that nanobiotechnology application expresses the necessity to follow a better way of producing, selecting, and consuming goods that will help to transform the actual linear economy in a circular economy, based on redesigning, reducing, recycling, and reusing

    A lab-scale experiment to measure terminal velocity of volcanic ash

    Get PDF
    In this paper, a novel methodology to measure trajectory and terminal velocity of volcanic ash in laboratory is presented. The methodology consists of: i) planning a lab-scale experiment in order to reproduce the sedimentation processes of fine volcanic ash based on the principle of dynamic similarity; ii) realizing the experimental set-up using a glass tank filled with glycerine, a web-cam based vision system and a dedicated image post processing tool able to estimate the position and the terminal velocity of any particle falling in the tank; iii) performing a calibration procedure to accurately estimate the uncertainty on particle velocity; iv) comparing the experimental results with estimations obtained by some particle fallout models available in literature. Our results shows that there is a good agreement between experimental terminal velocities and those obtained applying a model which includes information on particle shape. The proposed methodology allows us to investigate how the particle shape affects the sedimentation processes. Since the latter is strategic to improve the accuracy on modeling ash fallout, this work will contribute to reduce risks to aviations during explosive eruptions

    Smart virtual sensors for real-time assessment of Volcanic activity

    Get PDF
    Monitoring is mandatory in hazardous areas with active volcanoes. South Italy countries are seriously affected by continuous risk of volcanic ash emissions, explosions and eruptions. In particular, Mt. Etna and Stromboli volcanoes requires great efforts by the scientific community to develop efficient monitoring systems. Several tasks in surveillance are already being managed by authority; anyway, innovative techniques are required to improve the performance of the monitoring task which is mandatory to improve the quality of public safety. Synergy between competence on geophysical and engineer disciplines must be reinforced to develop monitoring systems aimed to increase information needed to promptly manage crisis arising from volcanic activities. In this paper an innovative monitoring system is proposed. The system is based on smart virtual sensors, which assures real-time management of the volcanic activity by providing a large amount of information on the time evolution of the observed phenomena. The system performs in two parallel tasks: the first aims to optimise the amount of the recorded data by a smart real-time processing of the gathered images and gives very rough set of information on the ongoing events (explosions, eruptions, ash emissions, etc.), while the second task is aimed to a deep analysis of the recorded data to compute statistic indexes characterizing the evolution of the volcanic activity observed (area, height, width, aspect ratio, magma flow rate, etc.). The prototype of the proposed system is composed by a thermal camera sensor and a PC-based environment for data analysis. In particular, two computation tools were developed in the LabVIEW environment which provide the above mentioned information on the ongoing activity along with a smart processing of the acquired data. The system will be aimed to give useful information to the surveillance authority which, on the basis of the obtained results, can suitably manage the incoming events

    Evaluation of mechanical and interfacial properties of bio-composites based on poly(lactic acid) with natural cellulose fibers

    Get PDF
    The circular economy policy and the interest for sustainable material are inducing a constant expansion of the bio-composites market. The opportunity of using natural fibers in bio-based and biodegradable polymeric matrices, derived from industrial and/or agricultural waste, represents a stimulating challenge in the replacement of traditional composites based on fossil sources. The coupling of bioplastics with natural fibers in order to lower costs and promote degradability is one of the primary objectives of research, above all in the packaging and agricultural sectors where large amounts of non-recyclable plastics are generated, inducing a serious problem for plastic disposal and potential accumulation in the environment. Among biopolymers, poly(lactic acid) (PLA) is one of the most used compostable, bio-based polymeric matrices, since it exhibits process ability and mechanical properties compatible with a wide range of applications. In this study, two types of cellulosic fibers were processed with PLA in order to obtain bio-composites with different percentages of microfibers (5%, 10%, 20%). The mechanical properties were evaluated (tensile and impact test), and analytical models were applied in order to estimate the adhesion between matrix and fibers and to predict the material's stiffness. Understanding these properties is of particular importance in order to be able to tune and project the final characteristics of bio-composites

    Pullulan for advanced sustainable body- And skin-contact applications

    Get PDF
    The present review had the aim of describing the methodologies of synthesis and properties of biobased pullulan, a microbial polysaccharide investigated in the last decade because of its interesting potentialities in several applications. After describing the implications of pullulan in nano-technology, biodegradation, compatibility with body and skin, and sustainability, the current applications of pullulan are described, with the aim of assessing the potentialities of this biopolymer in the biomedical, personal care, and cosmetic sector, especially in applications in contact with skin

    Electrosprayed shrimp and mushroom nanochitins on cellulose tissue for skin contact application

    Get PDF
    Cosmetics has recently focused on biobased skin-compatible materials. Materials from natural sources can be used to produce more sustainable skin contact products with enhanced bioactivity. Surface functionalization using natural-based nano/microparticles is thus a subject of study, aimed at better understanding the skin compatibility of many biopolymers also deriving from biowaste. This research investigated electrospray as a method for surface modification of cellulose tissues with chitin nanofibrils (CNs) using two different sources—namely, vegetable (i.e., from fungi), and animal (from crustaceans)—and different solvent systems to obtain a biobased and skin-compatible product. The surface of cellulose tissues was uniformly decorated with electrosprayed CNs. Biological analysis revealed that all treated samples were suitable for skin applications since human dermal keratinocytes (i.e., HaCaT cells) successfully adhered to the processed tissues and were viable after being in contact with released substances in culture media. These results indicate that the use of solvents did not affect the final cytocompatibility due to their effective evaporation during the electrospray process. Such treatments did not also affect the characteristics of cellulose; in addition, they showed promising anti-inflammatory and indirect antimicrobial activity toward dermal keratinocytes in vitro. Specifically, cellulosic substrates decorated with nanochitins from shrimp showed strong immunomodulatory activity by first upregulating then downregulating the pro-inflammatory cytokines, whereas nanochitins from mushrooms displayed an overall anti-inflammatory activity via a slight decrement of the pro-inflammatory cytokines and increment of the anti-inflammatory marker. Electrospray could represent a green method for surface modification of sustainable and biofunctional skincare products

    Chitin and Its Derivatives: Nanostructured Materials from Different Marine and Terrestrial Sources

    Get PDF
    Chitin is a very abundant polysaccharide that can be obtained from well-known marine sources (crustaceans), but also from terrestrial sources (mushrooms and insects). In the case where animal sources are considered, the material can be obtained by much abundant food or feeding waste. The extraction methodologies were not developed with similar technical readiness levels considering the different sources and the further conversion to chitin nanofibrils and chitosan is also under study, enabling the production of products differentiated for their macromolecular structures and morphology.Chitin nanofibrils from sea food sources were used in sanitary, cosmetic and packaging applications, where their anti-microbial properties and good biocompatibility were very useful. Chitin from mushrooms and sea food was used as starting material in possible coatings for cellulosic and bioplastic substrates. Currently chitin from insects (Hermetia Illucens) is also under study as well as the methodologies for extracting derivatives from it. Infrared analysis is an interesting technique to compare chitins, chitin nanofibrils and chitosan from different sources as well as electron microscopy for studying their morphology. The derivatives of chitin, such as chitosan and chitin nanofibrils, show anti-microbial properties. Hence, their use in several applications, ranging from packaging to sanitary and cosmetics, can conjugate high performance novel products with a reduced environmental concern. The comparison between chitin derivatives from different sources is very useful to address the biopolymers to specific applications, including the agricultural sector. While more and more applications for chitin derivatives will be developed, differences between them should be clarified and correlated to the sources, the methodologies of their production and their physical-chemical properties

    Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process

    Get PDF
    Due to their properties and applications, the growing demand for chitin and chitosan has stimulated the market to find more sustainable alternatives to the current commercial source (crustaceans). Bioconverter insects, such as Hermetia illucens, are the appropriate candidates, as chitin is a side stream of insect farms for feed applications. This is the first report on production and characterization of chitin and chitosan from different biomasses derived from H. illucens, valorizing the overproduced larvae in feed applications, the pupal exuviae and the dead adults. Pupal exuviae are the best biomass, both for chitin and chitosan yields and for their abundance and easy supply from insect farms. Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscope analysis revealed the similarity of insect-derived polymers to commercial ones in terms of purity and structural morphology, and therefore their suitability for industrial and biomedical applications. Its fibrillary nature makes H. illucens chitin suitable for producing fibrous manufacts after conversion to chitin nanofibrils, particularly adults-derived chitin, because of its high crystallinity. A great versatility emerged from the evaluation of the physicochemical properties of chitosan obtained from H. illucens, which presented a lower viscosity-average molecular weight and a high deacetylation degree, fostering its putative antimicrobial properties

    Properties and skin compatibility of films based on poly(lactic acid) (PLA) bionanocomposites incorporating chitin nanofibrils (CN)

    Get PDF
    Nanobiocomposites suitable for preparing skin compatible films by flat die extrusion were prepared by using plasticized poly(lactic acid) (PLA), poly(butylene succinate-co-adipate) (PBSA), and Chitin nanofibrils as functional filler. Chitin nanofibrils (CNs) were dispersed in the blends thanks to the preparation of pre-nanocomposites containing poly(ethylene glycol). Thanks to the use of a melt strength enhancer (Plastistrength) and calcium carbonate, the processability and thermal properties of bionanocomposites films containing CNs could be tuned in a wide range. Moreover, the resultant films were flexible and highly resistant. The addition of CNs in the presence of starch proved not advantageous because of an extensive chain scission resulting in low values of melt viscosity. The films containing CNs or CNs and calcium carbonate resulted biocompatible and enabled the production of cells defensins, acting as indirect anti-microbial. Nevertheless, tests made with Staphylococcus aureus and Enterobacter spp. (Gram positive and negative respectively) by the qualitative agar diffusion test did not show any direct anti-microbial activity of the films. The results are explained considering the morphology of the film and the different mechanisms of direct and indirect anti-microbial action generated by the nanobiocomposite based films
    • …
    corecore