273 research outputs found

    MRI/TRUS data fusion for brachytherapy

    Full text link
    BACKGROUND: Prostate brachytherapy consists in placing radioactive seeds for tumour destruction under transrectal ultrasound imaging (TRUS) control. It requires prostate delineation from the images for dose planning. Because ultrasound imaging is patient- and operator-dependent, we have proposed to fuse MRI data to TRUS data to make image processing more reliable. The technical accuracy of this approach has already been evaluated. METHODS: We present work in progress concerning the evaluation of the approach from the dosimetry viewpoint. The objective is to determine what impact this system may have on the treatment of the patient. Dose planning is performed from initial TRUS prostate contours and evaluated on contours modified by data fusion. RESULTS: For the eight patients included, we demonstrate that TRUS prostate volume is most often underestimated and that dose is overestimated in a correlated way. However, dose constraints are still verified for those eight patients. CONCLUSIONS: This confirms our initial hypothesis

    Wavelet-Based Processing of Angular Measurements: Application to Realistic Display Aspect Simulation

    Get PDF
    In this paper, we describe a new wavelet-based data processing that performs simultaneously compression and fast multidimensional interpolation of hemispherical angular features. This algorithm is applied for display aspect simulation to allow predicting the rendering of any content on a given display under any illuminations conditions. Such rendering is based on a complex set of data composed of emitting display properties as a function of angle as well as its reflective behavior (BRDF). This record was migrated from the OpenDepot repository service in June, 2017 before shutting down

    Talaria: Continuous Drag & Drop on a Wall Display

    Get PDF
    International audienceWe present an interaction technique combining tactile actions and Midair pointing to access out-of-reach content on large displays without the need to walk across the display. Users can start through a Touch gesture on the display surface and finish Midair by pointing to push content away or inversely to retrieve a content. The technique takes advantage of wellknown semantics of pointing in human-to-human interaction.These, coupled with the semantics of proximal relations and deictic proxemics make the proposed technique very powerful as it leverages on well-understood human-human interaction modalities. Experimental results show this technique to outperform direct tactile interaction on dragging tasks. From our experience we derive four guidelines for interaction with large-scale displays

    A New Kind of Graded Lie Algebra and Parastatistical Supersymmetry

    Full text link
    In this paper the usual Z2Z_2 graded Lie algebra is generalized to a new form, which may be called Z2,2Z_{2,2} graded Lie algebra. It is shown that there exists close connections between the Z2,2Z_{2,2} graded Lie algebra and parastatistics, so the Z2,2Z_{2,2} can be used to study and analyse various symmetries and supersymmetries of the paraparticle systems

    Fourier optics technology for viewing angle measurements: past, present and future

    Get PDF
    The proposed paper will explain the technical bases of the Fourier Optics Technology (OFT) for viewing angle measurement of displays and the evolution of the ELDIM systems over the years. There multiple capacities to obtain luminance, color, spectral, polarization or reflection data will be explained and illustrated by various application examples. New OFT systems dedicated to the characterization ofNIR light sources will be also presented

    High resolution magnetic microscopy based on semi-encapsulated graphene Hall sensors

    Get PDF
    The realization of quantitative, noninvasive sensors for ambient magnetic imaging with high spatial and magnetic field resolution remains a major challenge. To address this, we have developed a relatively simple process to fabricate semi-encapsulated graphene/hBN Hall sensors assembled by dry transfer onto pre-patterned gold contacts. 1 lm-sized Hall cross sensors at a drive current of 0.5 lA exhibit excellent room temperature sensitivity, SI 700 V/AT, and good minimum detectable fields, Bmin ¼ 0.54 G/Hz0.5 at a measurement frequency of 1 kHz, with considerable scope for further optimization of these parameters. We illustrate their application in an imaging study of labyrinth magnetic domains in a ferrimagnetic yttrium iron garnet film

    Observing the Suppression of Superconductivity in RbEuFe4As4 by Correlated Magnetic Fluctuations

    Get PDF
    In this Letter, we describe quantitative magnetic imaging of superconducting vortices in RbEuFe4As4 in order to investigate the unique interplay between the magnetic and superconducting sublattices. Our scanning Hall microscopy data reveal a pronounced suppression of the superfluid density near the magnetic ordering temperature in good qualitative agreement with a recently developed model describing the suppression of superconductivity by correlated magnetic fluctuations. These results indicate a pronounced exchange interaction between the superconducting and magnetic subsystems in RbEuFe4As4, with important implications for future investigations of physical phenomena arising from the interplay between them

    Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12

    Get PDF
    The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and x-ray powder diffraction, SQUID measurements, and dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO ceramics were investigated in great detail to document the influence of low-level doping with 3d metals on the antiferromagnetic structure and dielectric properties. In the light of possible magnetoelectric coupling in these doped ceramics, the dielectric measurements were also carried out in external magnetic fields up to 7 T, showing a minor but significant dependence of the dielectric constant on the applied magnetic field. Undoped CCTO is well-known for its colossal dielectric constant in a broad frequency and temperature range. With the present extended characterization of doped as well as undoped CCTO, we want to address the question why doping with only 1% Mn or 0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni doping changes the dielectric properties only slightly. In addition, diffraction experiments and magnetic investigations were undertaken to check for possible correlations of the magnitude of the colossal dielectric constants with structural details or with magnetic properties like the magnetic ordering, the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that while the magnetic ordering temperature and the effective moment of all investigated CCTO ceramics are rather similar, there is a dramatic influence of doping and tempering time on the Curie-Weiss constant.Comment: 10 pages, 11 figure

    Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Get PDF
    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2–2.3 π mm-rad horizontally and 0.6–1.0 π mm-rad vertically, a horizontal dispersion of 90–190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE
    corecore