30,926 research outputs found

    The space-time structure of hard scattering processes

    Full text link
    Recent studies of exclusive electroproduction of vector mesons at JLab make it possible for the first time to play with two independent hard scales: the virtuality Q^2 of the photon, which sets the observation scale, and the momentum transfer t to the hadronic system, which sets the interaction scale. They reinforce the description of hard scattering processes in terms of few effective degrees of freedom relevant to the Jlab-Hermes energy range.Comment: 4 pages; 5 figure

    Mean eigenvalues for simple, simply connected, compact Lie groups

    Full text link
    We determine for each of the simple, simply connected, compact and complex Lie groups SU(n), Spin(4n+2)(4n+2) and E6E_6 that particular region inside the unit disk in the complex plane which is filled by their mean eigenvalues. We give analytical parameterizations for the boundary curves of these so-called trace figures. The area enclosed by a trace figure turns out to be a rational multiple of π\pi in each case. We calculate also the length of the boundary curve and determine the radius of the largest circle that is contained in a trace figure. The discrete center of the corresponding compact complex Lie group shows up prominently in the form of cusp points of the trace figure placed symmetrically on the unit circle. For the exceptional Lie groups G2G_2, F4F_4 and E8E_8 with trivial center we determine the (negative) lower bound on their mean eigenvalues lying within the real interval [−1,1][-1,1]. We find the rational boundary values -2/7, -3/13 and -1/31 for G2G_2, F4F_4 and E8E_8, respectively.Comment: 12 pages, 8 figure

    Elective Modernism and the Politics of (Bio) Ethical Expertise

    Get PDF
    In this essay I consider whether the political perspective of third wave science studies – ‘elective modernism’ – offers a suitable framework for understanding the policy-making contributions that (bio)ethical experts might make. The question arises as a consequence of the fact that I have taken inspiration from the third wave in order to develop an account of (bio)ethical expertise. I offer a précis of this work and a brief summary of elective modernism before considering their relation. The view I set out suggests that elective modernism is a political philosophy and that although its use in relation to the use of scientific expertise in political and policy-making process has implications for the role of (bio)ethical expertise it does not, in the final analysis, provide an account that is appropriate for this latter form of specialist expertise. Nevertheless, it is an informative perspective, and one that can help us make sense of the political uses of (bio)ethical expertise

    Long distance quantum teleportation in a quantum relay configuration

    Full text link
    A long distance quantum teleportation experiment with a fiber-delayed Bell State Measurement (BSM) is reported. The source creating the qubits to be teleported and the source creating the necessary entangled state are connected to the beam splitter realizing the BSM by two 2 km long optical fibers. In addition, the teleported qubits are analyzed after 2,2 km of optical fiber, in another lab separated by 55 m. Time bin qubits carried by photons at 1310 nm are teleported onto photons at 1550 nm. The fidelity is of 77%, above the maximal value obtainable without entanglement. This is the first realization of an elementary quantum relay over significant distances, which will allow an increase in the range of quantum communication and quantum key distribution.Comment: 4 pages, submitte

    Gribov horizon and i-particles: about a toy model and the construction of physical operators

    Get PDF
    Restricting the functional integral to the Gribov region Ω\Omega leads to a deep modification of the behavior of Euclidean Yang-Mills theories in the infrared region. For example, a gluon propagator of the Gribov type, k2k4+γ^4\frac{k^2}{k^4+{\hat \gamma}^4}, can be viewed as a propagating pair of unphysical modes, called here ii-particles, with complex masses ±iγ^2\pm i{\hat \gamma}^2. From this viewpoint, gluons are unphysical and one can see them as being confined. We introduce a simple toy model describing how a suitable set of composite operators can be constructed out of ii-particles whose correlation functions exhibit only real branch cuts, with associated positive spectral density. These composite operators can thus be called physical and are the toy analogy of glueballs in the Gribov-Zwanziger theory.Comment: 35 pages, 10 .pdf figures. v2: version accepted for publication in Physical Review

    Thermopower as a Possible Probe of Non-Abelian Quasiparticle Statistics in Fractional Quantum Hall Liquids

    Full text link
    We show in this paper that thermopower is enhanced in non-Abelian quantum Hall liquids under appropriate conditions. This is because thermopower measures entropy per electron in the clean limit, while the degeneracy and entropy associated with non-Abelian quasiparticles enhance entropy when they are present. Thus thermopower can potentially probe non-Abelian nature of the quasiparticles, and measure their quantum dimension.Comment: 5 pages. Minor revisions in response to referee comments. Published versio

    Backreaction in trans-Planckian cosmology: renormalization, trace anomaly and selfconsistent solutions

    Full text link
    We analyze the semiclassical Einstein equations for quantum scalar fields satisfying modified dispersion relations. We first discuss in detail the renormalization procedure based on adiabatic subtraction and dimensional regularization. We show that, contrary to what expected from power counting arguments, in 3+1 dimensions the subtraction involves up to the fourth adiabatic order even for dispersion relations containing higher powers of the momentum. Then we analyze the dependence of the trace of the renormalized energy momentum tensor with the scale of new physics, and we recover the usual trace anomaly in the appropriate limit. We also find selfconsistent de Sitter solutions for dispersion relations that contain up to the fourth power of the momentum. Using this particular example, we also discuss the possibility that the modified dispersion relation can be mimicked at lower energies by an effective initial state in a theory with the usual dispersion relation.Comment: 19 pages, 3 figure

    Calculation of a Deuterium Double Shock Hugoniot from Ab initio Simulations

    Full text link
    We calculate the equation of state of dense deuterium with two ab initio simulations techniques, path integral Monte Carlo and density functional theory molecular dynamics, in the density range of 0.67 < rho < 1.60 g/cc. We derive the double shock Hugoniot and compare with the recent laser-driven double shock wave experiments by Mostovych et al. [1]. We find excellent agreement between the two types of microscopic simulations but a significant discrepancy with the laser-driven shock measurements.Comment: accept for publication in Phys. Rev. Lett., Nov. 2001, 4 pages, 4 figure

    Quantum Criticality in an Organic Magnet

    Get PDF
    Exchange interactions between S=12S=\frac{1}{2} sites in piperazinium hexachlorodicuprate produce a frustrated bilayer magnet with a singlet ground state. We have determined the field-temperature phase diagram by high field magnetization and neutron scattering experiments. There are two quantum critical points: Hc1=7.5H_{c1}=7.5 T separates a quantum paramagnet phase from a three dimensional, antiferromagnetically-ordered state while Hc2=37H_{c2}=37 T marks the onset of a fully polarized state. The ordered phase, which we describe as a magnon Bose-Einstein condensate (BEC), is embedded in a quantum critical regime with short range correlations. A low temperature anomaly in the BEC phase boundary indicates that additional low energy features of the material become important near Hc1H_{c1}.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett. Replaced original text with additional conten
    • …
    corecore