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Exchange interactions between S � 1
2 sites in piperazinium hexachlorodicuprate produce a frustrated

bilayer magnet with a singlet ground state. We have determined the field-temperature phase diagram by
high field magnetization and neutron scattering experiments. There are two quantum critical points:
Hc1 � 7:5 T separates a quantum paramagnet phase from a three dimensional, antiferromagnetically
ordered state while Hc2 � 37 T marks the onset of a fully polarized state. The ordered phase, which we
describe as a magnon Bose-Einstein condensate (BEC), is embedded in a quantum critical regime with
short range correlations. A low temperature anomaly in the BEC phase boundary indicates that additional
low energy features of the material become important near Hc1.
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The concept of a critical transition between different
phases of matter at temperature T � 0 is central to many
complex phenomena in strongly correlated systems [1].
Quantum critical points (QCPs) give rise to anomalous
properties through a range of temperatures, and may be
responsible for heavy fermions [2], non-Fermi liquids [3],
and the anomalous normal state of doped cuprates [4].
Among the nonthermal tuning parameters accessible to
the experimentalist, doping has been applied to access
QCPs in heavy fermion intermetallics [5,6] and copper
oxide superconductors [7], and hydrostatic pressure has
been used to expose anomalous superconducting [8] and
metallic [9] phases in weak itinerant magnets. While mag-
netic fields generally induce conventional transitions be-
tween states with static spin order, exceptions are found in
anisotropic spin systems where a transverse magnetic field,
H, can drive a transition from spin order at H � 0 to a
quantum disordered state [10]. The reverse transition from
a quantum paramagnet (QP) in zero field to an anisotropic
ordered state in high fields has been observed in certain
organo-metallics [11–13]. While materials with such be-
havior are often quasi-one-dimensional, recent experi-
ments have revealed a wider range of cooperative phe-
nomena in higher dimensional systems [14–16]. Owing
to the simplicity of the low energy Hamiltonian, high field
experiments on organo-metallic magnets are a promising
route to new information about quantum criticality.

We provide a comprehensive analysis of the H� T
phase diagram of a quasi-two-dimensional (2D) frustrated
organo-metallic antiferromagnet (AFM) with two field
driven QCPs. Key results include a detailed characteriza-
tion of a Bose-Einstein condensation (BEC) in the vicinity
of a zero-temperature quantum critical point. We also find
a low T anomaly in the BEC phase boundary, which may
indicate that nuclear spins and/or phonons are important
thermodynamic degrees of freedom close to the QCP.

Experiments were carried out on the quasi-2D
S � 1

2 quantum AFM piperazinium hexachlorodicuprate
[�C4H12N2�Cu2Cl6 � PHCC]. The crystal structure is
composed of Cu-Cl sheets in the a-c plane, separated by
piperazinium layers [17,18]. Magnetic properties are
dominated by the Cu-Cu interactions within individual
sheets shown in Fig. 1. The magnetic connectivity is that
of an oblique bilayer, with the strongest bond, i.e., the

FIG. 1 (color online). Differential susceptibility ��H;T� for
PHCC. Solid white line for H < 14:2 T is the line of phase
transitions defined by the onset of Néel order at higher field. The
terms QP, LRO, and FP are explained in the text. Inset: PHCC
structure showing the Cu2� S � 1

2 sites (solid circles) viewed
along the b axis. Interacting spins are connected by lines with
thickness proportional to the contribution to the H � 0 ground
state energy. The red dashed [blue solid] bonds are frustrated
[unfrustrated] and increase [decrease] the ground state energy.
Numbering corresponds to Ref. [17]. Vectors show the ordered
spin structure at T � 1:65 K and H � 13:7 T.
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dimer, bond 1, providing interlayer coupling. Frustrated
interlayer bonds 2 and 8 may also play a role in producing a
singlet ground state with strong correlations to five near
neighbors. Magnetic excitations at H � 0 are dominated
by a dispersive triplet of magnons, also known as the
triplon, with a bandwidth W � 1:8 meV and an energy
gap � � 1 meV. Cluster expansion analysis of the H �
0 dispersion indicates that the strongest intralayer bond
J6 � 0:36J1, while the frustrating bonds J2, J8 are� 0:1J1

[19]. An experimental limit of 0.2(1) meV has been placed
on the out of plane dispersion and the triplons are degen-
erate to within 0.05 meV.

Magnetic susceptibility measurements were performed
at the National High Magnetic Field Laboratory using a
compensated-coil susceptometer in pulsed fields up toH �
50 T for 0:46 K � T � 30 K [20]. The sample was a
1.36 mg hydrogenous single crystal with H k b. Elastic
neutron scattering measurements were performed on the
FLEX spectrometer at the Hahn-Meitner Institut (HMI).
The sample was composed of two 89% deuterated single
crystals with total mass 1.75 grams, coaligned within 0.5	

and oriented in the �h0l� scattering plane, H k b. A room
temperature graphite filter or a liquid nitrogen cooled
beryllium filter was employed in the scattered beam for
neutron energies 14.7 and 2.5 meV, respectively. Beam
divergence was defined by the 58Ni neutron guide before
the monochromator and 600 collimators elsewhere.

Differential magnetic susceptibility data, ��H; T� �
dM=dH, are shown in Fig. 1. At T � 0:46 K there is
evidence for two quantum transitions from gapped phases
with � � 0 for H <Hc1 � 7:5 T and H >Hc2 � 37 T to
a magnetizable state in the intermediate field range. ��H�
at the lower transition is shown in Fig. 2(a). Integrating
��H; T � 0:46 K� yields a saturation magnetization of
1:10�5��B per spin, identifying the high field phase as fully
spin-polarized (FP).

In the intermediate field phase AFM Bragg peaks were
found at wave vectors Q � �� �0:5; 0; 0:5� where � is a
reciprocal lattice vector of the chemical cell. The lower
bound on the order parameter correlation length in the
a-c plane is 2:0�2� 
 103 �A. Analysis of peak intensities
yields the spin structure in Fig. 1, which is consistent with
bond energies measured in the zero field phase in that
(un)frustrated bonds correspond to (anti)parallel spins.
Normalizing to incoherent scattering and assuming long-
range order (LRO) along b yields g�BhSi � 0:33�3�g�B at
T � 1:65 K and H � 13:7 T.

Figure 2 shows the order parameter onset in H and T
sweeps. While the onset of Bragg scattering coincides with
the onset of elevated ��H� for T � 0:4 K, Bragg peaks first
appear well within the high susceptibility state for T �
3 K. A similar conclusion is reached based on the T sweep
at H � 14:2 T where the critical temperature for LRO is
Tc�14:2T� � 3:705�3� K compared to the T � 8 K onset
of the high susceptibility state. The solid line for H <
14:2 T in Fig. 1 is the phase boundary inferred from
neutron diffraction with further details in Fig. 3(a). For
T > 0:5 K, the LRO phase resides well within the high
susceptibility state.

At low T, the phase boundary to Néel order approaches
the onset of the high susceptibility state, and for T < 0:4 K
there is no intermediate phase that can be distinguished
from the data. At lower T, field sweeps of the magnetic
Bragg intensity, shown in Fig. 4(a), indicate a minimum in
the phase boundary for T � 0:2 K. Plotted versus T in
Fig. 4(b), these data show an intensity maximum for T �
0:2 K and 7:4<H < 7:9 T indicating that PHCC passes
into and then back out of the LRO phase in this field range.

Figures 2 and 4 show a rounded onset of magnetic
scattering in PHCC. If critical fluctuations are responsible
for this, the energy scale must be less than the �50 �eV
energy resolution. Alternatively, field inhomogeneity can
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FIG. 2 (color online). (a) Field-dependence of ��H� (filled
symbols) at T � 0:46 K and 3 K, and of the �12 0�1

2� AFM Bragg
intensity I�H� (open symbols) at T � 0:42 K and 2.85 K. The
onset of 3D ordering occurs above Hc1. (b) Temperature depen-
dence of �12 0�1

2� Bragg peak at H � 14:2 T, compared to ��H;T�.
Solid lines through I�H� and I�T� are fits as described in the text.
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FIG. 3. (a) Phase diagram for PHCC near Hc1. Solid
squares: onset of high susceptibility state. Open circles: onset
of AFM LRO from fits described in the text. Absolute fields
reported for open and closed symbols differ by less than 0.05 T.
The solid line is the calculated mean-field BEC phase boundary.
(b) Critical exponent for onset of LRO. Crossed symbols are
from the T-dependent data, I�T�, in Fig. 2(b).
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smear a singular onset. The solid lines in Figs. 2 and 4(a)
were obtained by fitting I�H� / �H �Hc�

2� and I�T� /
�Tc � T�2� including the width of a rectangular field dis-
tribution as a fitting parameter along with Hc, Tc, and the
critical exponent, �. While a 3.6(1)% distribution width
accounts for the data, it exceeds the � 1% width expected
for the HMI magnet. An additional potential source of
static broadening are impurities that produce effective
random fields [21].

Systematic values for Hc�T� and � were obtained by
fitting the following expression �I�H; T� / M�H; T�2 /
�H �Hc�T��2� to data in Figs. 2 and 4(a) restricted to
the ranges H <Hc � 0:75 T and T > Tc � 0:33 K. The
apparent distribution width for the applied field, H, was
fixed at 3.6%. The corresponding phase boundary in
Fig. 3(a) affirms the existence of a wedge in H � T space
with neither LRO nor a spectral gap. Taylor expansion of
the phase boundary about a generic point (Hc, Tc) on the
line of transitions, Hc�T� � Hc�Tc� �H0c�Tc��T � Tc�,
shows that if M�H; T� / �H �Hc�T��� then M�Hc; T� /
�H0c�Tc��Tc � T��

�. Hence the consistent values of � ex-
tracted fromH and T scans at T � 3:5 K instill confidence
in the experiment and analysis [see Fig. 3(b)].

It is well-known that the field-induced phase transition
to long-range order for antiferromagnets with an axial
symmetry can be described as a BEC of magnons [22–
24]. An applied field drives the chemical potential for spin-
polarized magnons (Sz � 1) to zero causing BEC at suffi-
ciently low T. In 2D, BEC can only occur at T � 0 so we
associate the sharp increase in ��H� indicated by solid
points in Figs. 2(a) and 3(a) with the corresponding finite
temperature quantum critical regime. In the immediate
vicinity of the LRO phase boundary the critical phase is
denoted renormalized classical (RC) [25] though there are
no notable distinctions between the RC and QC regimes in
the present data. The RC regime is characterized by a small
population of magnons that behave as individual particles.

The finite T transition to Néel order may be BEC resulting
from weak inter-bilayer coupling or a 2D Kosterlitz-
Thouless (KT) transition. To distinguish these scenarios
we explore the corresponding theoretical phase bounda-
ries. Following Nikuni et al. [24] and Misguich and
Oshikawa [26] we treat magnons as bosons with a chemi-
cal potential � � g�B�H �Hc�0�� and short range repul-
sion, v0:

 H �
X
k

��k ���a
y
kak �

v0

V

X
q;k;k0

ayq�k0a
y
q�k0aq�kaq�k:

(1)

Mean-field theory yields a condensate magnon density n �
M=Msat � g�B�H �Hc�0��=2v0. Beyond a cusp that may
be associated with logarithmic corrections [27], Fig. 2(a)
shows that the low T ��H� indeed displays a plateau from
which we obtain v0=V � 1:9 meV, where V is the unit cell
volume. As expected for hard core bosons, this number is
similar to the magnon bandwidth W � 1:8 meV.

The Hartree Fock approximation provides the effective
Hamiltonian

 H �
X
k

��k ��� v0n�a
y
kak: (2)

Bosons condense when the renormalized chemical poten-
tial ~� � �� 2v0nc � 0, which yields the critical density
and field

 nc�T� �
1

V

X
k

1

exp��k=T� � 1
; (3)

 Hc�T� � Hc�0� � 2v0nc�T�=g�B: (4)

We assume quasi-2D magnon dispersion �k � �2D
k �

2��1� cos�kyb�� with �2D
k from experiments [17]. When

T  �, only the bottom of the magnon band is thermally
excited and one may replace the exact band structure with
parabolic dispersion to obtain

 nc�T� � ��3=2�
�
m3DT

2�@2

�
3=2
; (5)

wherem3D � �mambmc�
1=3 is the 3D effective mass. In the

limit of a very weak inter-bilayer tunnelling there is a
regime � T  W where the in-plane dispersion can
be treated as parabolic and the critical density for a
quasi-2D Bose gas is obtained [28]

 nc�T� �
m2DT

2�@2b
log

2T
�
: (6)

Here m2D � �mamc�
1=2 and b is the inter-bilayer distance.

In the intermediate regime T � O��� the critical density
first rises faster than T3=2 [26] before crossing over to
T logT behavior. For � � 0:03 meV the calculated phase
boundary shown in Fig. 3(a) is consistent with the data over
one decade of T. If bilayers in PHCC were fully decoupled
from each other the BEC would change into a KT vortex-
unbinding transition. In 2D the crossover exponent 	 � 1,
so in contrast to the observed phase boundary a KT phase
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FIG. 4 (color online). Magnetic field (a) and temperature (b)
dependent scattering intensity of the �12 0�1

2� AFM Bragg peak,
showing reentrant behavior of the gapped phase near Hc1. Solid
lines are fits to model described in text. The temperature depen-
dence was extracted from multiple field sweeps through binning
with �H � 0:1 T.
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boundary Hc�T� � Hc�0� � CT
	 would be linear for T !

0. This is consistent with a recent comprehensive analysis
of magnon condensation in 2D by Sachdev and Dunkel
[29]. Hence it appears that 3D BEC rather than vortex
unbinding is the appropriate description of the field-
induced transition to LRO in PHCC.

The experimental high T limit for the critical exponent
� � 0:34�2� obtained by averaging PHCC data for
0:5 K< T < 4 K is consistent with a 3D XY model for
which � � 0:345 [30]. Upon cooling through the tempera-
ture T � 0:4 K where Hc�T� merges with the 2D BEC
crossover inferred from magnetization data, the experi-
mental values for � increase. The apparent increase of
the exponent � is consistent with an expected crossover
from a thermally driven transition to a quantum phase
transition. Because the upper critical dimension of the
zero-temperature BEC is dc � 2 [31], � has a mean-field
value of 1

2 .
A discrepancy in the description of the phase dia-

gram for PHCC presented so far exists for T < 0:3 K
where the observed critical field exceeds the BEC phase
boundary [Eqs. (4) and (3)] with a finite T � 0:2 K mini-
mum (Figs. 3 and 4). Various low energy aspects of PHCC
may be responsible for this behavior. For example, mea-
surements of the dependence of Hc1 on field orientation
[32] indicates g-factor anisotropy in the range 2:1< g

 <
2:35. This provides an estimate for exchange anisotropy of
�0:1 meV [33], which could lead to an Ising transition at
sufficiently low T. Alternatively nuclear spins and phonons
which are effectively decoupled from magnetism at high T
and normally unimportant compared to exchange interac-
tions at low T may become relevant close to the field tuned
QCP. Similar low T anomalies have been found in other
electronic spin systems close to quantum criticality such as
GGG [34], LiHoF4 [10], and ZnCr2O4 [35]. In LiHoF4, the
anomaly favors the spin ordered phase and is associated
with hyperfine coupling to the nuclear spin system. The
spin ordered phase is also favored for ZnCr2O4 where the
anomaly is associated with magneto-elastic coupling. Low
temperature spin-lattice coupling is also observed in the
spin-gap systems TlCuCl3 [36] and CuHpCl [37]. For
PHCC, the singlet ground state may be affected by cou-
pling to Cu nuclear spins for T < 0:2 K. This could help to
stabilize bond order over spin order and explain our failure
to discover additional phase boundaries at low T. Alter-
natively, H � 7:4 T and T � 0:2 K may be a tetra-critical
point separating the bond ordered phase, the (0.5, 0, 0.5)
type spin ordered phase and a yet to be detected magneto-
elastic or nuclear� electronic spin ordered phase.

The H � T phase diagram for PHCC illustrates many
important aspects of strongly correlated systems. There is
evidence for a finite T crossover to a quasi-2D RC phase
with 3D BEC at lower T and higher H. We also presented
evidence for a nonmonotonic phase boundary to spin order
at low T, which indicates that exchange anisotropy, nuclear
spin, and/or lattice degrees of freedom can be important
close to quantum criticality.
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