485 research outputs found

    The reproducibility debate is an opportunity, not a crisis

    Get PDF
    There are many factors that contribute to the reproducibility and replicability of scientific research. There is a need to understand the research ecosystem, and improvements will require combined efforts across all parts of this ecosystem. National structures can play an important role in coordinating these efforts, working collaboratively with researchers, institutions, funders, publishers, learned societies and other sectoral organisations, and providing a monitoring and reporting function. Whilst many new ways of working and emerging innovations hold a great deal of promise, it will be important to invest in meta-research activity to ensure that these approaches are evidence based, work as intended, and do not have unintended consequences. Addressing reproducibility will require working collaboratively across the research ecosystem to share best practice and to make the most effective use of resources. The UK Reproducibility Network (UKRN) brings together Local Networks of researchers, Institutions, and External Stakeholders (funders, publishers, learned societies and other sectoral organisations), to coordinate action on reproducibility and work to ensure the UK retains its place as a centre for world-leading research. This activity is coordinated by the UKRN Steering Group. We consider this structure as valuable, bringing together a range of voices at a range of levels to support the combined efforts required to enact change

    Caffeine ingestion does not alter performance during a 100-km cycling time-trial performance

    Get PDF
    This study analyzed the effect of caffeine ingestion on performance during a repeated-measures, 100-km, laboratory cycling time trial that included bouts of 1- and 4-km high intensity epochs (HIE). Eight highly trained cyclists participated in 3 separate trials - placebo ingestion before exercise with a placebo carbohydrate solution and placebo tablets during exercise (Pl), or placebo ingestion before exercise with a 7% carbohydrate drink and placebo tablets during exercise (Cho), or caffeine tablet ingestion before and during exercise with 7% carbohydrate (Caf). Placebo (twice) or 6 mg · kg-1 caffeine was ingested 60 min prior to starting 1 of the 3 cycling trials, during which subjects ingested either additional placebos or a caffeine maintenance dose of 0.33 mg · kg-1 every 15 min to trial completion. The 100-km time trial consisted of five 1-km HIE after 10, 32, 52, 72, and 99 km, as well as four 4-km HIE after 20, 40, 60, and 80 km. Subjects were instructed to complete the time trial and all HIE as fast as possible. Plasma (caffeine) was significantly higher during Caf (0.43 ± 0.56 and 1.11 ± 1.78 mM pre vs. post Pl; and 47.32 ± 12.01 and 72.43 ± 29.08 mM pre vs. post Caf). Average power, HIE time to completion, and 100-km time to completion were not different between trials. Mean heart rates during both the 1-km HIE (184.0 ± 9.8 Caf; 177.0 ± 5.8 Pl; 177.4 ± 8.9 Cho) and 4-km HIE (181.7 ± 5.7 Caf; 174.3 ± 7.2 Pl; 175.6 ± 7.6 Cho;p less than .05) was higher in Caf than in the other groups. No significant differences were found between groups for either EMG amplitude (IEMG) or mean power frequency spectrum (MPFS). IEMG activity and performance were not different between groups but were both higher in the 1-km HIE, indicating the absence of peripheral fatigue and the presence of a centrally-regulated pacing strategy that is not altered by caffeine ingestion. Caffeine may be without ergogenic benefit during endurance exercise in which the athlete begins exercise with a defined, predetermined goal measured as speed or distance

    Estimating Historical Forest Density From Land‐Survey Data: A Response to Baker and Williams (2018)

    Get PDF
    In the Western United States, historical forest conditions are used to inform land management and ecosystem restoration goals (North et al. 2009, Stephens et al. 2016). This interest is based on the premise that historical forests were resilient to ecological disturbances (Keane et al. 2018). Researchers throughout the United States have used the General Land Office (GLO) surveys of the late 19th and early 20th centuries to estimate historical forest conditions (Bourdo 1956, Schulte and Mladenoff 2001, Cogbill et al. 2002, Paciorek et al. 2016). These surveys were conducted throughout the United States and represent a systematic, historical sample of trees across a broad geographic area. A challenge of using GLO survey data is the accurate estimation of tree density from sparse witness tree data. Levine et al. (2017) tested the accuracy and precision of four plotless density estimators that can be applied to GLO survey sample data, including the Cottam (Cottam and Curtis 1956), Pollard (Pollard 1971), Morisita (Morisita 1957), and mean harmonic Voronoi density (MHVD; Williams and Baker 2011) estimators. The Cottam, Pollard, and Morisita are count‐based plotless density estimators (PDE) and have a history of being applied to GLO data (e.g., Kronenfeld and Wang 2007, Rhemtulla et al. 2009, Hanberry et al. 2012, Maxwell et al. 2014, Goring et al. 2016). The MHVD estimator is an area‐based PDE that has been applied by the study\u27s authors to sites in the western United States (Baker 2012, 2014), but had not been independently evaluated. Levine et al. (2017) found that the Morisita estimator was the least biased and most precise estimator for estimating density from GLO survey data, with a relative root mean square error ranging from 0.11 to 0.78 for the six study sites. Levine et al. (2017) also demonstrated the MHVD approach consistently overestimated density from 16% to 258% in all six study areas that were analyzed

    Comparative population structure of <i>Plasmodium malariae</i> and <i>Plasmodium falciparum</i> under different transmission settings in Malawi

    Get PDF
    &lt;b&gt;Background:&lt;/b&gt; Described here is the first population genetic study of Plasmodium malariae, the causative agent of quartan malaria. Although not as deadly as Plasmodium falciparum, P. malariae is more common than previously thought, and is frequently in sympatry and co-infection with P. falciparum, making its study increasingly important. This study compares the population parameters of the two species in two districts of Malawi with different malaria transmission patterns - one seasonal, one perennial - to explore the effects of transmission on population structures. &lt;BR/&gt; &lt;b&gt;Methods:&lt;/b&gt; Six species-specific microsatellite markers were used to analyse 257 P. malariae samples and 257 P. falciparum samples matched for age, gender and village of residence. Allele sizes were scored to within 2 bp for each locus and haplotypes were constructed from dominant alleles in multiple infections. Analysis of multiplicity of infection (MOI), population differentiation, clustering of haplotypes and linkage disequilibrium was performed for both species. Regression analyses were used to determine association of MOI measurements with clinical malaria parameters. &lt;BR/&gt; &lt;b&gt;Results:&lt;/b&gt; Multiple-genotype infections within each species were common in both districts, accounting for 86.0% of P. falciparum and 73.2% of P. malariae infections and did not differ significantly with transmission setting. Mean MOI of P. falciparum was increased under perennial transmission compared with seasonal (3.14 vs 2.59, p = 0.008) and was greater in children compared with adults. In contrast, P. malariae mean MOI was similar between transmission settings (2.12 vs 2.11) and there was no difference between children and adults. Population differentiation showed no significant differences between villages or districts for either species. There was no evidence of geographical clustering of haplotypes. Linkage disequilibrium amongst loci was found only for P. falciparum samples from the seasonal transmission setting. &lt;BR/&gt; &lt;b&gt;Conclusions:&lt;/b&gt; The extent of similarity between P. falciparum and P. malariae population structure described by the high level of multiple infection, the lack of significant population differentiation or haplotype clustering and lack of linkage disequilibrium is surprising given the differences in the biological features of these species that suggest a reduced potential for out-crossing and transmission in P. malariae. The absence of a rise in P. malariae MOI with increased transmission or a reduction in MOI with age could be explained by differences in the duration of infection or degree of immunity compared to P. falciparum

    Concussion-Associated Gene Variant COMT rs4680 Is Associated With Elite Rugby Athlete Status

    Get PDF
    Objective: Concussions are common match injuries in elite rugby, and reports exist of reduced cognitive function and long-term health consequences that can interrupt or end a playing career and produce continued ill health. The aim of this study was to investigate the association between elite rugby status and 8 concussion-associated risk polymorphisms. We hypothesized that concussion-associated risk genotypes and alleles would be underrepresented in elite rugby athletes compared with nonathletes. Design: A case-control genetic association study.Setting:  Institutional (university). Participants: Elite White male rugby athletes [n = 668, mean (SD) height 1.85 (0.07) m, mass 102 (12) kg, and age 29 (7) years] and 1015 nonathlete White men and women (48% men). Interventions: Genotype was the independent variable, obtained by PCR of genomic DNA using TaqMan probes.Main Outcome Measure:  Elite athlete status with groups compared using χ2 and odds ratio (OR). Results: The COMT rs4680 Met/Met (AA) genotype, Met allele possession, and Met allele frequency were lower in rugby athletes (24.8%, 74.6%, and 49.7%, respectively) than nonathletes (30.2%, 77.6%, and 54.0%; P &lt; 0.05). The Val/Val (GG) genotype was more common in elite rugby athletes than nonathletes (OR 1.39, 95% confidence interval 1.04-1.86). No other polymorphism was associated with elite athlete status. Conclusions: Elite rugby athlete status is associated with COMT rs4680 genotype that, acting pleiotropically, could affect stress resilience and behavioral traits during competition, concussion risk, and/or recovery from concussion. Consequently, assessing COMT rs4680 genotype might aid future individualized management of concussion risk among athletes.
    corecore