383 research outputs found
Wind loads analysis at the anchorages of the Talavera de la Reina cable stayed bridge
This paper describes wind tunnel tests performed on wind tunnel models of the Talavera de la Reina cable stayed bridge. The work describes the aeroelastic model construction and it is focused on the evaluation and analysis of the mean and peak wind loads at the tower foundation and the cable anchorages since these data can be very useful by the bridge manufacturer as a support for the bridge design. The work is part of a complete wind tunnel study carried out to analyze the aeroelastic stability of the bridge
a decoupled numerical procedure for modelling soil interaction in the computation of the dynamic response of a rail track
Abstract The problem of vibration transmitted by train traffic to the soil in the case of railway lines in urban areas is gaining increasing attention in environmental impact analysis. An efficient method to consider both the train-track interaction in detail and the vibration transmitted to the soil nearby with an affordable computational cost is desirable. The paper proposes a numerical procedure based on a substructuring approach, in which the system is divided into three main subdomains: the train running on the track, the rail subjected to the loads coming from the train and the reactions from the sleepers and the "ground" sub-system, composed by the sleepers, the ballast with its subgrade and the actual ground. The overall procedure is divided into subsequent steps: first, the finite element modelling of the sleeper-ballast-subgrade combined system, characterized within the linear elastic field by means of frequency response functions at rail-sleeper interfaces. In a second step, moving loads transmitted to the track are computed by numerical time domain integration of the equations of motion of the train running on a model of the track only, in which the subgrade is modelled as a series of spring-damper elements, whose parameters are tuned according to the results of the FE model used in the first step and therefore consistent with it. Non-linear behavior of the rail-wheel interaction can be accounted for by the time-domain procedure. The track dynamics is finally computed via direct frequency domain analysis; the track is again modelled by Finite Elements, loaded by the forces transmitted by the train wheels and by the supporting sleepers. Finally, the vibrations propagated through the soil to a general receiver point are evaluated. The procedure can exploit favorable properties of frequency domain analysis in treating moving loads; in addition, frequency dependent properties of materials can be introduced
Fragments Generated during Liquid Hydrogen Tank Explosions
Liquid hydrogen (LH2) may be employed to transport large quantities of pure hydrogen or be stored onboard of ships, airplanes and trains fuelled by hydrogen, thanks to its high density compared to gaseous compressed hydrogen. LH2 is a cryogenic fluid with an extremely low boiling point (-253°C at atmospheric pressure) that must be stored in double-walled vacuum insulated tanks to limit the boil-off formation. There is limited knowledge on the consequences of LH2 tanks catastrophic rupture. In fact, the yield of the consequences of an LH2 tank explosion (pressure wave, fragments and fireball) depend on many parameters such as tank dimension, filling degree, and tank internal conditions (temperature and pressure) prior the rupture. Only two accidents provoked by the rupture of an LH2 tank occurred in the past and a couple of experimental campaigns focussed on this type of accident scenario were carried out for LH2. The aim of this study is to analyse one of the LH2 tank explosion consequences namely the fragments. The longest horizontal and vertical ranges of the fragments thrown away from the blast wave are estimated together with the spatial distribution around the tank. Theoretical models are adopted in this work and validated with the experimental results. The proposed models can aid the risk analysis of LH2 storage technologies and provide critical insights to plan a prevention and mitigation strategy and improve the safety of hydrogen applications
LCA of Zero Valent Iron Nanoparticles Encapsulated in Algal Biomass for Polishing Treated Effluents
Research data produced within the CARIPLO IMAP and Perform Water 2030 projects were processed using the SimaPro software to carry out the Life Cycle Assessment according to ISO 14040-44 of an innovative process of treated effluents' polishing. The study aims to evaluate the integration of a microalgae culture as a side-stream process into the baseline layout of a wastewater treatment plant to remove nitrogen from the supernatant of sludge centrifugation from an environmental perspective. In particular, the investigated system focuses on using the algal biomass produced as an organic matrix for encapsulating zero-valent iron nanoparticles to be used for the final refinement of the effluent. Zero-valent iron (ZVI) is a reactive metal and an effective reducing agent. It can be used to remove organic and inorganic pollutants (e.g., chlorinated organics, pharmaceuticals, metals, textile dyestuffs). The encapsulation of ZVI by hydrothermal carbonization (HTC) in a carbonaceous matrix allows for overcoming the problems related to its lack of stability, easy aggregation, and difficulty in separating the ZVI nanoparticles from the treated solution. The case study refers to Bresso wastewater treatment plant (Milan province, Northern Italy). The environmental performances of the study were assessed following the Life Cycle Impact Assessment methods IMPACT 2002+. According to the results, the new process integration does not affect the environmental performance of the WWTP, still implying a significant improvement in the removal of metals and micropollutants. In fact, due to the ability of ZVI nanoparticles to remove organic and inorganic pollutants, the outflowing load will be significantly reduced, which will improve the environmental performance of the entire Bresso wastewater treatment plant
The neural correlates of verb and noun processing A PET study
The hypothesis that categorical information, distinguishing among word classes, such as nouns, verbs, etc., is an organizational principle of lexical knowledge in the brain, is supported by the observation of aphasic subjects who are selectively impaired in the processing of nouns and verbs. The study lesion location in these patients has suggested that the left temporal lobe plays a crucial role in processing nouns, while the left frontal lobe is necessary for verbs. To delineate the brain areas involved in the processing of different word classes, we used PET to measure regional cerebral activity during tasks requiring reading of concrete and abstract nouns and verbs for lexical decision. These tasks activated an extensive network of brain areas, mostly in the left frontal and temporal cortex, which represents the neural correlate of single word processing. Some left hemispheric areas, including the dorsolateral frontal and lateral temporal cortex, were activated only by verbs, while there were no brain areas more active in response to nouns. Furthermore, the comparison of abstract and concrete words indicated that abstract word processing was associated with selective activations (right temporal pole and amygdala, bilateral inferior frontal cortex), while no brain areas were more active in response to concrete words. There were no significant interaction effects between word class and concreteness. Taken together, these findings are compatible with the view that lexical-semantic processing of words is mediated by an extensive, predominantly left hemispheric network of brain structures. Additional brain activations appear to be related to specific semantic content, or, in the case of verbs, may be associated with the automatic access of syntactic information
Double-Stranded RNA Targeting Dicer-Like Genes Compromises the Pathogenicity of Plasmopara viticola on Grapevine
Downy mildew caused by Plasmopara viticola is one of the most devastating diseases of grapevine, attacking all green parts of the plant. The damage is severe when the infection at flowering stage is left uncontrolled. P. viticola management consumes a significant amount of classical pesticides applied in vineyards, requiring efficient and environmentally safe disease management options. Spray-induced gene silencing (SIGS), through the application of exogenous double-stranded RNA (dsRNA), has shown promising results for the management of diseases in crops. Here, we developed and tested the potential of dsRNA targeting P. viticola Dicer-like (DCL) genes for SIGS-based crop protection strategy. The exogenous application of PvDCL1/2 dsRNA, a chimera of PvDCL1 and PvDCL2, highly affected the virulence of P. viticola. The reduced expression level of PvDCL1 and PvDCL2 transcripts in infected leaves, treated with PvDCL1/2 dsRNA, was an indication of an active RNA interference mechanism inside the pathogen to compromise its virulence. Besides the protective property, the PvDCL1/2 dsRNA also exhibited a curative role by reducing the disease progress rate of already established infection. Our data provide a promising future for PvDCL1/2 dsRNA as a new generation of RNA-based resistant plants or RNA-based agrochemical for the management of downy mildew disease in grapevine
Insight into GEBR-32a: Chiral Resolution, Absolute Configuration and Enantiopreference in PDE4D Inhibition
Alzheimer's disease is the most common type of dementia, affecting millions of people worldwide. One of its main consequences is memory loss, which is related to downstream effectors of cyclic adenosine monophosphate (cAMP). A well-established strategy to avoid cAMP degradation is the inhibition of phosphodiesterase (PDE). In recent years, GEBR-32a has been shown to possess selective inhibitory properties against PDE type 4 family members, resulting in an improvement in spatial memory processes without the typical side effects that are usually correlated with this mechanism of action. In this work, we performed the HPLC chiral resolution and absolute configuration assignment of GEBR-32a. We developed an efficient analytical and semipreparative chromatographic method exploiting an amylose-based stationary phase, we studied the chiroptical properties of both enantiomers and we assigned their absolute configuration by 1H-NMR (nuclear magnetic resonance). Lastly, we measured the IC50 values of both enantiomers against both the PDE4D catalytic domain and the long PDE4D3 isoform. Results strongly support the notion that GEBR-32a inhibits the PDE4D enzyme by interacting with both the catalytic pocket and the regulatory domains
High-accuracy methodology for the integrative restoration of archaeological teeth by using reverse engineering techniques and rapid prototyping
The reconstruction of the original morphology of bones and teeth after sampling for physicochemical (e.g., radiocarbon and uranium series dating, stable isotope analysis, paleohistology, trace element analysis) and biomolecular analyses (e.g., ancient DNA, paleoproteomics) is appropriate in many contexts and compulsory when dealing with fossil human remains. The reconstruction protocols available to date are mostly based on manual re-integration of removed portions and can lead to an imprecise recovery of the original morphology. In this work, to restore the original external morphology of sampled teeth we used computed microtomography (microCT), reverse engineering (RE), computer-aided design (CAD) and rapid prototyping (RP) techniques to fabricate customized missing parts. The protocol was tested by performing the reconstruction of two Upper Palaeolithic human teeth from the archaeological excavations of Roccia San Sebastiano (Mondragone, Caserta, southern Italy) and Riparo I of Grotte Verdi di Pradis (Clauzetto, Pordenone, north-eastern Italy) (RSS2 and Pradis 1, respectively), which were sampled for physicochemical and biomolecular analyses. It involved a composite procedure consisting in: a) the microCT scanning of the original specimens; b) sampling; c) the microCT scanning of the specimens after sampling; d) the reconstruction of the digital 3D surfaces of the specimens before and after sampling; e) the creation of digital models of the missing/sampled portions by subtracting the 3D images of the preserved portions (after the sampling) from the images of the intact specimens (before the sampling) by using reverse engineering techniques; f) the prototyping of the missing/sampled portions to be integrated; g) the painting and application of the prototypes through the use of compatible and reversible adhesives. By following the proposed protocol, in addition to the fabrication of a physical element which is faithful to the original, it was possible to obtain a remarkable correspondence between the contact surfaces of the two portions (the original and the reconstructed one) without having to resort to any manipulation/adaptation of either element
In-flight performances of the BeppoSAX -Ray Burst Monitor
The Italian-Dutch satellite for X-ray Astronomy BeppoSAX is successfully operating on a 600 km equatorial orbit since May 1996. We present here the in-flight performances of the Gamma Ray Burst Monitor experiment during its first year of operation. The GRBM is the secondary function of the four CsI(Na) slabs primarily operating as an active anticoincidence of the PDS hard X-ray experiment.. It has a geometric area of about 4000 cm2 but, due to its location in the core of the satellite its effective area is dependent on the energy and direction of the impinging photons. A dedicated electronics allows to trigger on cosmic gamma-ray bursts. When the trigger condition is satisfied the light curve of the event is recorded from 8 s before to 98 s after the trigger time, with a maximum time resolution of 0.48 ms, in an energy band of 40-700 keV
Novel compounds targeting the RNA-binding protein HuR : Structure-based design, synthesis and interaction studies
The key role of RNA-binding proteins (RBPs) in regulating post-transcriptional processes and their involvement in several pathologies (i.e., cancer and neurodegeneration) have highlighted their potential as therapeutic targets. In this scenario, Embryonic Lethal Abnormal Vision (ELAV) or Hu proteins and their complexes with target mRNAs have been gaining growing attention. Compounds able to modulate the complex stability could constitute an innovative pharmacological strategy for the treatment of numerous diseases. Nevertheless, medicinal-chemistry efforts aimed at developing such compounds are still at an early stage. As part of our ongoing research in this field, we hereby present the rational design and synthesis of structurally novel HuR ligands, potentially acting as HuR-RNA interferers. The following assessment of the structural features of their interaction with HuR, combining saturation-transfer difference NMR and in silico studies, provides a guide for further research on the development of new effective interfering compounds of the HuR-RNA complex
- …