10,882 research outputs found

    Exact solution of lossy asymmetrical coupled dielectric slab waveguides

    Get PDF
    This paper gives an exact characteristic equation for asymmetrical coupled dielectric slab waveguides with losses in both the guiding and surrounding regions. For the lossless case the solution of a single transcendental equation is all that is required for the evaluation of the propagation constant

    Apollo experience report: Lunar module environmental control subsystem

    Get PDF
    A functional description of the environmental control subsystem is presented. Development, tests, checkout, and flight experiences of the subsystem are discussed; and the design fabrication, and operational difficulties associated with the various components and subassemblies are recorded. Detailed information is related concerning design changes made to, and problems encountered with, the various elements of the subsystem, such as the thermal control water sublimator, the carbon dioxide sensing and control units, and the water section. The problems associated with water sterilization, water/glycol formulation, and materials compatibility are discussed. The corrective actions taken are described with the expection that this information may be of value for future subsystems. Although the main experiences described are problem oriented, the subsystem has generally performed satisfactorily in flight

    Cavity ringdown laser absorption spectroscopy and time-of-flight mass spectroscopy of jet-cooled silver silicides

    Get PDF
    The cavity ringdown technique has been employed for the first spectroscopic characterization of the AgSi molecule, which is generated in a pulsed laser vaporization plasma reactor. A total of 20 rovibronic bands between 365 and 385 nm have been measured and analyzed to yield molecular properties for the X, B, and C 2Sigma states of AgSi. A time-of-flight mass spectrometer simultaneously monitors species produced in the molecular beam and has provided the first direct evidence for the existence of polyatomic silver silicides. Comparison of the AgSi data to our recent results for the CuSi diatom reveals very similar chemical bonding in the two coinage metal silicides, apparently dominated by covalent interactions

    Pattern formation by lateral inhibition with feedback: a mathematical model of Delta-Notch intercellular signalling

    Get PDF
    In many developing tissues, adjacent cells diverge in character so as to create a fine-grained pattern of cells in contrasting states of differentiation. It has been proposed that such patterns can be generated through lateral inhibition—a type cells–cell interaction whereby a cell that adopts a particular fate inhibits its immediate neighbours from doing likewise. Lateral inhibition is well documented in flies, worms and vertebrates. In all of these organisms, the transmembrane proteins Notch and Delta (or their homologues) have been identified as mediators of the interaction—Notch as receptor, Delta as its ligand on adjacent cells. However, it is not clear under precisely what conditions the Delta-Notch mechanism of lateral inhibition can generate the observed types of pattern, or indeed whether this mechanism is capable of generating such patterns by itself. Here we construct and analyse a simple and general mathematical model of such contact-mediated lateral inhibition. In accordance with experimental data, the model postulates that receipt of inhibition (i.e. activation of Notch) diminishes the ability to deliver inhibition (i.e. to produce active Delta). This gives rise to a feedback loop that can amplify differences between adjacent cells. We investigate the pattern-forming potential and temporal behavior of this model both analytically and through numerical simulation. Inhomogeneities are self-amplifying and develop without need of any other machinery, provided the feedback is sufficiently strong. For a wide range of initial and boundary conditions, the model generates fine-grained patterns similar to those observed in living systems

    Vulnerability of horticultural crop production to extreme weather events

    Get PDF
    The potential impact of future extreme weather events on horticultural crops was evaluated. A review was carried out of the sensitivities of a representative set of crops to environmental challenges. It confirmed that a range of environmental factors are capable of causing a significant impact on production, either as yield or quality loss. The most important of these were un-seasonal temperature, water shortage or excess,and storms. Future scenarios were produced by the LARS-WG1, a stochastic weather generator linked with UKCIP02 projections of future climate. For the analyses, 150 years of synthetic weather data were generated for baseline, 2020HI and 2050HI scenarios at defined locations. The output from the weather generator was used in case studies, either to estimate the frequency of a defined set of circumstances known to have impact on cropping, or as inputs to models of crop scheduling or pest phenology or survival. The analyses indicated that episodes of summer drought severe enough to interrupt the continuity of supply of salads and other vegetables will increase while the frequency of autumns with sufficient rainfall to restrict potato lifting will decrease. They also indicated that the scheduling of winter cauliflowers for continuity of supply will require the deployment of varieties with different temperature sensitivities from those in use currently. In the pest insect studies, the number of batches of Agrotis segetum (cutworm) larvae surviving to third instar increased with time, as did the potential number of generations of Plutella xylostella (diamond-back moth) in the growing season, across a range of locations. The study demonstrated the utility of high resolution scenarios in predicting the likelihood of specific weather patterns and their potential effect on horticultural production. Several limitations of the current scenarios and biological models were also identified

    On the ground electronic states of copper silicide and its ions

    Get PDF
    The low-lying electronic states of SiCu, SiCu^+, and SiCu^− have been studied using a variety of high-level ab initio techniques. As expected on the basis of simple orbital occupancy and bond forming for Si(s^2p^2)+Cu(s^1) species, ^2Π_r, ^1ÎŁ^+, and ^3ÎŁ^− states were found to be the ground electronic states for SiCu, SiCu^+, and SiCu^−, respectively; the ^2Π_r state is not that suggested in most recent experimental studies. All of these molecules were found to be quite strongly bound although the bond lengths, bond energies, and harmonic frequencies vary slightly among them, as a result of the nonbonding character of the 2π-MO (molecular orbital) [composed almost entirely of the Si 3p-AO (atomic orbital)], the occupation of which varies from 0 to 2 within the ^1ÎŁ^+, ^2Π_r, and ^3ÎŁ^− series. The neutral SiCu is found to have bound excited electronic states of ^4ÎŁ^−, ^2Δ, ^2ÎŁ^+, and ^2Π_i symmetry lying 0.5, 1.2, 1.8, and 3.2 eV above the ^2Π_r ground state. It is possible but not yet certain that the ^2Π_i state is, in fact, the “B state” observed in the recent experimental studies by Scherer, Paul, Collier, and Saykally

    Heat Stress Effect on Immune Function in Dairy Cattle

    Full text link
    This information was presented at the 2017 Cornell Nutrition Conference for Feed Manufacturers, organized by the Department of Animal Science In the College of Agriculture and Life Sciences at Cornell University. Softcover copies of the entire conference proceedings may be purchased at http://ansci.cals.cornell.edu/extension-outreach/adult-extension/dairy-management/order-proceedings-resources.This presentation will cover recent work examining the impact of heat stress in late gestation on the cow and the calf, during the dry period and subsequent lactation, including the effects on immune function. The presentation will also address the effects of heat stress on health and performance of lactating dairy cows, and use of an immune modulator to reduce the impacts of heat stress
    • 

    corecore