8,676 research outputs found

    Turbulent boundary layer over solid and porous surfaces with small roughness

    Get PDF
    The wind tunnel models and instrumentation used as well as data reduction and error analysis techniques employed are described for an experimental study conducted to measure directly skin friction and obtain profiles of mean velocity, axial and normal turbulence intensity, and Reynolds stress in the untripped boundary on a large diameter axisymmetric body. Results are given for such a body with a (1) smooth, solid surface; (2) a sandpaper roughened, solid surface; (3) a sintered metal, porous surface; (4) a ""smooth'' performated titanium surface; (5) a rough, solid surface made of fine diffusion bonded screening; and (6) a rough, porous surface made of the same screening. The roughness values were in low range (k+ 5 to 7) just above what is normally considered ""hydraulically smooth''. Measurements were taken at several axial locations and tow or normal stream freestream velocities, 45.1 m/sec and 53.5 m/sec

    Turbulent boundary layer over solid and porous surfaces with small roughness

    Get PDF
    Skin friction and profiles of mean velocity, axial and normal turbulence intensity, and Reynolds stress in the untripped boundary layer were measured directly on a large diameter, axisymmetric body with: (1) a smooth, solid surface; (2) a sandpaper-roughened, solid surface; (3) a sintered metal, porous surface; (4) a smooth, perforated titanium surface; (5) a rough solid surface made of fine, diffusion bonded screening, and (6) a rough, porous surface of the same screening. Results obtained for each of these surfaces are discussed. It is shown that a rough, porous wall simply does not influence the boundary layer in the same way as a rough solid wall. Therefore, turbulent transport models for boundary layers over porous surfaces either with or without injection or suction, must include both surface roughness and porosity effects

    Temporal fluctuations in the differential rotation of cool active stars

    Full text link
    This paper reports positive detections of surface differential rotation on two rapidly rotating cool stars at several epochs, by using stellar surface features (both cool spots and magnetic regions) as tracers of the large scale latitudinal shear that distorts the convective envelope in this type of stars. We also report definite evidence that this differential rotation is different when estimated from cool spots or magnetic regions, and that it undergoes temporal fluctuations of potentially large amplitude on a time scale of a few years. We consider these results as further evidence that the dynamo processes operating in these stars are distributed throughout the convective zone rather than being confined at its base as in the Sun. By comparing our observations with two very simple models of the differential rotation within the convective zone, we obtain evidence that the internal rotation velocity field of the stars we investigated is not like that of the Sun, and may resemble that we expect for rapid rotators. We speculate that the changes in differential rotation result from the dynamo processes (and from the underlying magnetic cycle) that periodically converts magnetic energy into kinetic energy and vice versa. We emphasise that the technique outlined in this paper corresponds to the first practical method for investigating the large scale rotation velocity field within convective zones of cool active stars, and offers several advantages over asteroseismology for this particular purpose and this specific stellar class.Comment: 14 pages, 4 figure

    Magnetic activity on AB Doradus: Temporal evolution of starspots and differential rotation from 1988 to 1994

    Get PDF
    Surface brightness maps for the young K0 dwarf AB Doradus are reconstructed from archival data sets for epochs spanning 1988 to 1994. By using the signal-to-noise enhancement technique of Least-Squares Deconvolution, our results show a greatly increased resolution of spot features than obtained in previously published surface brightness reconstructions. These images show that for the exception of epoch 1988.96, the starspot distributions are dominated by a long-lived polar cap, and short-lived low to high latitude features. The fragmented polar cap at epoch 1988.96 could indicate a change in the nature of the dynamo in the star. For the first time we measure differential rotation for epochs with sufficient phase coverage (1992.05, 1993.89, 1994.87). These measurements show variations on a timescale of at least one year, with the strongest surface differential rotation ever measured for AB Dor occurring in 1994.86. In conjunction with previous investigations, our results represent the first long-term analysis of the temporal evolution of differential rotation on active stars.Comment: accepted by MNRAS 18 pages 18 figure

    Apollo experience report: Lunar module environmental control subsystem

    Get PDF
    A functional description of the environmental control subsystem is presented. Development, tests, checkout, and flight experiences of the subsystem are discussed; and the design fabrication, and operational difficulties associated with the various components and subassemblies are recorded. Detailed information is related concerning design changes made to, and problems encountered with, the various elements of the subsystem, such as the thermal control water sublimator, the carbon dioxide sensing and control units, and the water section. The problems associated with water sterilization, water/glycol formulation, and materials compatibility are discussed. The corrective actions taken are described with the expection that this information may be of value for future subsystems. Although the main experiences described are problem oriented, the subsystem has generally performed satisfactorily in flight

    Rotationally Modulated X-ray Emission from T Tauri Stars

    Get PDF
    We have modelled the rotational modulation of X-ray emission from T Tauri stars assuming that they have isothermal, magnetically confined coronae. By extrapolating surface magnetograms we find that T Tauri coronae are compact and clumpy, such that rotational modulation arises from X-ray emitting regions being eclipsed as the star rotates. Emitting regions are close to the stellar surface and inhomogeneously distributed about the star. However some regions of the stellar surface, which contain wind bearing open field lines, are dark in X-rays. From simulated X-ray light curves, obtained using stellar parameters from the Chandra Orion Ultradeep Project, we calculate X-ray periods and make comparisons with optically determined rotation periods. We find that X-ray periods are typically equal to, or are half of, the optical periods. Further, we find that X-ray periods are dependent upon the stellar inclination, but that the ratio of X-ray to optical period is independent of stellar mass and radius.Comment: 10 pages, 8 figures, accepted for publication in MNRA

    Kentucky Law Survey: Criminal Procedure

    Get PDF

    Doppler lidar observations of sensible heat flux and intercomparisons with a ground-based energy balance station and WRF model output

    Get PDF
    This is an open access article - Copyright @ 2009 E. Schweizerbart'sche VerlagsbuchhandlungDuring the Convective and Orographically induced Precipitation Study (COPS), a scanning Doppler lidar was deployed at Achern, Baden-WĂŒttemberg, Germany from 13th June to 16th August 2007. Vertical velocity profiles ('rays') through the boundary layer were measured every 3 seconds with vertical profiles of horizontal wind velocity being derived from performing azimuth scans every 30 minutes. During Intense Observation Periods radiosondes were launched from the site. In this paper, a case study of convective boundary layer development on 15th July 2007 is investigated. Estimates of eddy dissipation rate are made from the vertically pointing lidar data and used as one input to the velocity-temperature co-variance equation to estimate sensible heat flux. The sensible heat flux values calculated from Doppler lidar data are compared with a surface based energy balance station and output from the Weather Research and Forecasting (WRF) model.Funding is obtained from NER

    Are glucose profiles well-controlled within the targets recommended by the International Diabetes Federation in type 2 diabetes? A meta-analysis of results from continuous glucose monitoring based studies

    Get PDF
    AIMS: To assess continuous glucose monitoring (CGM) derived intra-day glucose profiles using global guideline for type 2 diabetes recommended by the International Diabetes Federation (IDF). METHODS: The Cochrane Library, MEDLINE, PubMed, CINAHL and Science Direct were searched to identify observational studies reporting intra-day glucose profiles using CGM in people with type 2 diabetes on any anti-diabetes agents. Overall and subgroup analyses were conducted to summarise mean differences between reported glucose profiles (fasting glucose, pre-meal glucose, postprandial glucose and post-meal glucose spike/excursion) and the IDF targets. RESULTS: Twelve observational studies totalling 731 people were included. Pooled fasting glucose (0.81 mmol/L, 95% CI, 0.53-1.09 mmol/L), postprandial glucose after breakfast (1.63 mmol/L, 95% CI, 0.79-2.48 mmol/L) and post-breakfast glucose spike (1.05 mmol/L, 95% CI, 0.13-1.96 mmol/L) were significantly higher than the IDF targets. Pre-lunch glucose, pre-dinner glucose and postprandial glucose after lunch and dinner were above the IDF targets but not significantly. Subgroup analysis showed significantly higher fasting glucose and postprandial glucose after breakfast in all groups: HbA1c <7% and ≄7% (53 mmol/mol) and duration of diabetes <10 years and ≄10 years. CONCLUSIONS: Independent of HbA1c, fasting glucose and postprandial glucose after breakfast are not well-controlled in type 2 diabetes
    • 

    corecore