22 research outputs found

    Analysis of Racked Wood Pallets

    Get PDF
    A rational analysis procedure for designing wood stringer pallets for use in warehouse storage racks was developed for manufacturers and pallet users and is part of a computerized automatic design and analysis program called the Pallet Design System (PDS). The procedure uses simplified analog models of pallets and matrix structural analysis methods to compute the stress and deflection of critical structural elements. Semi-rigid nail joints are modeled as spring elements. Pallets with 2, 3, 4, or 5 stringers and up to 15 deckboards can be analyzed with a variety of load types including distributed and concentrated loads. The strength and stiffness of experimental pallets were compared to predicted values and showed good agreement

    Development of a 2,4-diaminothiazole series for the treatment of human African trypanosomiasis highlights the importance of static-cidal screening of analogues

    Get PDF
    While treatment options for human African trypanosomiasis (HAT) have improved significantly, there is still a need for new drugs with eradication now a realistic possibility. Here, we report the development of 2,4-diaminothiazoles that demonstrate significant potency against Trypanosoma brucei, the causative agent of HAT. Using phenotypic screening to guide structure-activity relationships, potent drug-like inhibitors were developed. Proof of concept was established in an animal model of the hemolymphatic stage of HAT. To treat the meningoencephalitic stage of infection, compounds were optimized for pharmacokinetic properties, including blood-brain barrier penetration. However, in vivo efficacy was not achieved, in part due to compounds evolving from a cytocidal to a cytostatic mechanism of action. Subsequent studies identified a nonessential kinase involved in the inositol biosynthesis pathway as the molecular target of these cytostatic compounds. These studies highlight the need for cytocidal drugs for the treatment of HAT and the importance of static-cidal screening of analogues

    Two Brothers with Skewed Thiopurine Metabolism in Ulcerative Colitis Treated Successfully with Allopurinol and Mercaptopurine Dose Reduction

    Get PDF
    Thiopurine therapy effectively maintains remission in inflammatory bowel disease. However, many patients are unable to achieve optimum benefits from azathioprine or 6-mercaptopurine because of undesirable metabolism related to high thiopurine methyltransferase (TPMT) activity characterized by hepatic transaminitis secondary to increased 6-methylmercaptopurine (6-MMP) production and reduced levels of therapeutic 6-thioguanine nucleotide (6-TGN). Allopurinol can optimize this skewed metabolism. We discuss two brothers who were both diagnosed with ulcerative colitis (UC). Their disease remained active despite oral and topical mesalamines. Steroids followed by 6-mercaptopurine (MP) were unsuccessfully introduced for both patients and both were found to have high 6-MMP and low 6-TGN levels, despite normal TMPT enzyme activity, accompanied by transaminitis. Allopurinol was introduced in combination with MP dose reduction. For both brothers addition of allopurinol was associated with successful remission and optimized MP metabolites. These siblings with active UC illustrate that skewed thiopurine metabolism may occur despite normal TPMT enzyme activity and can lead to adverse events in the absence of disease control. We confirm previous data showing that addition of allopurinol can reverse this skewed metabolism, and reduce both hepatotoxicity and disease activity, but we now also introduce the concept of a family history of preferential MP metabolism as a clue to effective management for other family members

    Neurological manifestations of SARS-CoV-2 infection in hospitalised children and adolescents in the UK: a prospective national cohort study

    Get PDF
    Background: The spectrum of neurological and psychiatric complications associated with paediatric SARS-CoV-2 infection is poorly understood. We aimed to analyse the range and prevalence of these complications in hospitalised children and adolescents. Methods: We did a prospective national cohort study in the UK using an online network of secure rapid-response notification portals established by the CoroNerve study group. Paediatric neurologists were invited to notify any children and adolescents (age <18 years) admitted to hospital with neurological or psychiatric disorders in whom they considered SARS-CoV-2 infection to be relevant to the presentation. Patients were excluded if they did not have a neurological consultation or neurological investigations or both, or did not meet the definition for confirmed SARS-CoV-2 infection (a positive PCR of respiratory or spinal fluid samples, serology for anti-SARS-CoV-2 IgG, or both), or the Royal College of Paediatrics and Child Health criteria for paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS). Individuals were classified as having either a primary neurological disorder associated with COVID-19 (COVID-19 neurology group) or PIMS-TS with neurological features (PIMS-TS neurology group). The denominator of all hospitalised children and adolescents with COVID-19 was collated from National Health Service England data. Findings: Between April 2, 2020, and Feb 1, 2021, 52 cases were identified; in England, there were 51 cases among 1334 children and adolescents hospitalised with COVID-19, giving an estimated prevalence of 3·8 (95% CI 2·9–5·0) cases per 100 paediatric patients. 22 (42%) patients were female and 30 (58%) were male; the median age was 9 years (range 1–17). 36 (69%) patients were Black or Asian, 16 (31%) were White. 27 (52%) of 52 patients were classified into the COVID-19 neurology group and 25 (48%) were classified into the PIMS-TS neurology group. In the COVID-19 neurology group, diagnoses included status epilepticus (n=7), encephalitis (n=5), Guillain-Barré syndrome (n=5), acute demyelinating syndrome (n=3), chorea (n=2), psychosis (n=2), isolated encephalopathy (n=2), and transient ischaemic attack (n=1). The PIMS-TS neurology group more often had multiple features, which included encephalopathy (n=22 [88%]), peripheral nervous system involvement (n=10 [40%]), behavioural change (n=9 [36%]), and hallucinations at presentation (n=6 [24%]). Recognised neuroimmune disorders were more common in the COVID-19 neurology group than in the PIMS-TS neurology group (13 [48%] of 27 patients vs 1 [<1%] of 25 patients, p=0·0003). Compared with the COVID-19 neurology group, more patients in the PIMS-TS neurology group were admitted to intensive care (20 [80%] of 25 patients vs six [22%] of 27 patients, p=0·0001) and received immunomodulatory treatment (22 [88%] patients vs 12 [44%] patients, p=0·045). 17 (33%) patients (10 [37%] in the COVID-19 neurology group and 7 [28%] in the PIMS-TS neurology group) were discharged with disability; one (2%) died (who had stroke, in the PIMS-TS neurology group). Interpretation: This study identified key differences between those with a primary neurological disorder versus those with PIMS-TS. Compared with patients with a primary neurological disorder, more patients with PIMS-TS needed intensive care, but outcomes were similar overall. Further studies should investigate underlying mechanisms for neurological involvement in COVID-19 and the longer-term outcomes. Funding: UK Research and Innovation, Medical Research Council, Wellcome Trust, National Institute for Health Research

    Bottom trawl fishing footprints on the world’s continental shelves

    Get PDF
    Publication history: Accepted - 23 August 2018; Published online - 8 October 2018.Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from <10% of seabed area in Australian and New Zealand waters, the Aleutian Islands, East Bering Sea, South Chile, and Gulf of Alaska to >50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when highresolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of 24 regions, therewas >95% probability that >90%of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing.Funding for meetings of the study group and salary support for R.O.A. were provided by the following: David and Lucile Packard Foundation; the Walton Family Foundation; the Alaska Seafood Cooperative; American Seafoods Group US; Blumar Seafoods Denmark; Clearwater Seafoods Inc.; Espersen Group; Glacier Fish Company LLC US; Gortons Seafood; Independent Fisheries Limited N.Z.; Nippon Suisan (USA), Inc.; Pesca Chile S.A.; Pacific Andes International Holdings, Ltd.; San Arawa, S.A.; Sanford Ltd. N.Z.; Sealord Group Ltd. N.Z.; South African Trawling Association; Trident Seafoods; and the Food and Agriculture Organisation of the United Nations. Additional funding to individual authors was provided by European Union Project BENTHIS EU-FP7 312088 (to A.D.R., O.R.E., F.B., N.T.H., L.B.-M., R.C., H.O.F., H.G., J.G.H., P.J., S.K., M.L., G.G.-M., N.P., P.E.P., T.R., A.S., B.V., and M.J.K.); the Instituto Português do Mar e da Atmosfera, Portugal (C.S.); the International Council for the Exploration of the Sea Science Fund (R.O.A. and K.M.H.); the Commonwealth Scientific and Industrial Research Organisation (C.R.P. and T.M.); the National Oceanic and Atmospheric Administration (R.A.M.); New Zealand Ministry for Primary Industries Projects BEN2012/01 and DAE2010/ 04D (to S.J.B. and R.F.); the Institute for Marine and Antarctic Studies, University of Tasmania and the Department of Primary Industries, Parks, Water and Environment, Tasmania, Australia (J.M.S.); and UK Department of Environment, Food and Rural Affairs Project MF1225 (to S.J.)

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    Quinol derivatives as potential trypanocidal agents

    Get PDF
    Quinols have been developed as a class of potential anti-cancer compounds. They are thought to act as double Michael acceptors, forming two covalent bonds to their target protein(s). Quinols have also been shown to have activity against the parasite Trypanosoma brucei, the causative organism of human African trypanosomiasis, but they demonstrated little selectivity over mammalian MRC5 cells in a counter-screen. In this paper, we report screening of further examples of quinols against T. brucei. We were able to derive an SAR, but the compounds demonstrated little selectivity over MRC5 cells. In an approach to increase selectivity, we attached melamine and benzamidine motifs to the quinols, because these moieties are known to be selectively concentrated in the parasite by transporter proteins. In general these transporter motif-containing analogues showed increased selectivity; however they also showed reduced levels of potency against T. brucei

    Development of small-molecule <i>Trypanosoma brucei</i> N-myristoyltransferase inhibitors:discovery and optimisation of a novel binding mode

    No full text
    The enzyme N-myristoyltransferase (NMT) from Trypanosoma brucei has been validated both chemically and biologically as a potential drug target for human African trypanosomiasis. We previously reported the development of some very potent compounds based around a pyrazole sulfonamide series, derived from a high-throughput screen. Herein we describe work around thiazolidinone and benzomorpholine scaffolds that were also identified in the screen. An X-ray crystal structure of the thiazolidinone hit in Leishmania major NMT showed the compound bound in the previously reported active site, utilising a novel binding mode. This provides potential for further optimisation. The benzomorpholinone was also found to bind in a similar region. Using an X-ray crystallography/structure-based design approach, the benzomorpholinone series was further optimised, increasing activity against T. brucei NMT by >1000-fold. A series of trypanocidal compounds were identified with suitable in vitro DMPK properties, including CNS exposure for further development. Further work is required to increase selectivity over the human NMT isoform and activity against T. brucei
    corecore