19 research outputs found

    Balancing end-to-end budgets of the Georges Bank ecosystem

    Get PDF
    Author Posting. © Elsevier, 2007. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Progress In Oceanography 74 (2007): 423-448, doi:10.1016/j.pocean.2007.05.003.Oceanographic regimes on the continental shelf display a great range in the time scales of physical exchange, biochemical processes and trophic transfers. The close surface-to-seabed physical coupling at intermediate scales of weeks to months means that the open ocean simplification to a purely pelagic food web is inadequate. Top-down trophic depictions, starting from the fish populations, are insufficient to constrain a system involving extensive nutrient recycling at lower trophic levels and subject to physical forcing as well as fishing. These pelagic-benthic interactions are found on all continental shelves but are particularly important on the relatively shallow Georges Bank in the northwest Atlantic. We have generated budgets for the lower food web for three physical regimes (well mixed, transitional and stratified) and for three seasons (spring, summer and fall/winter). The calculations show that vertical mixing and lateral exchange between the three regimes are important for zooplankton production as well as for nutrient input. Benthic suspension feeders are an additional critical pathway for transfers to higher trophic levels. Estimates of production by mesozooplankton, benthic suspension feeders and deposit feeders, derived primarily from data collected during the GLOBEC years of 1995-1999, provide input to an upper food web. Diets of commercial fish populations are used to calculate food requirements in three fish categories, planktivores, benthivores and piscivores, for four decades, 1963-2002, between which there were major changes in the fish communities. Comparisons of inputs from the lower web with fish energetic requirements for plankton and benthos indicate that we obtained reasonable agreement for the last three decades, 1973 to 2002. However, for the first decade, the fish food requirements were significantly less than the inputs. This decade, 1963-1972, corresponds to a period characterized by a strong Labrador Current and lower nitrate levels at the shelf edge, demonstrating how strong bottom-up physical forcing may determine overall fish yields.The research was done under the aegis of the U.S.-GLOBEC Northwest Atlantic Georges Bank Study, a program sponsored jointly by the U.S. National Science Foundation and the U.S. National Oceanic and Atmospheric Administration. We acknowledge NOAA-CICOR award NA17RJ1233 (J.H. Steele), NSF awards OCE0217399 (D.J. Gifford), OCE0217122 (J.J. Bisagni) and OCE0217257 (M.E. Sieracki). W.T. Stockhausen was supported by the NOAA Sponsored Coastal Ocean Research Program

    Bottom trawl fishing footprints on the world’s continental shelves

    Get PDF
    Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from 50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    Biological reference points for fish stocks in a multispecies context

    No full text
    Biological reference points (BRPs) are widely used to define safe levels of harvesting for marine fish popu- lations. Most BRPs are either minimum acceptable biomass levels or maximum fishing mortality rates. The values of BRPs are determined from historical abundance data and the life-history parameters of the fish species. However, when the life-history parameters change over time, the BRPs become moving targets. In particular, the natural mortality rate of prey species depends on predator levels; conversely, predator growth rates depend on prey availability. We tested a suite of BRPs for their robustness to observed changes in natural mortality and growth rates. We used the relatively simple Baltic Sea fish community for this sensitivity test, with cod as predator and sprat and herring as prey. In gen- eral, the BRPs were much more sensitive to the changes in natural mortality rates than to growth variation. For a prey species like sprat, fishing mortality reference levels should be conditioned on the level of predation mortality. For a predator species, a conservative level of fishing mortality can be identified that will prevent growth overfishing and en- sure stock replacement. These first-order multispecies interactions should be considered when defining BRPs for medium-term (5-10 year) management decisions

    PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa

    No full text
    Transposon mutagenesis was used to identify genes necessary for the expression of Pseudomonas aeruginosa type 4 fimbriae. In a library of 12,700 mutants, 147 were observed to have lost the spreading colony morphology associated with the presence of functional fimbriae. Of these, 28 had also acquired resistance to the fimbrial-specific bacteriophage PO4. The mutations conferring this phage resistance were found to have occurred at at least six different loci, including the three that had been previously shown to be required for fimbrial biosynthesis or function: the structural subunit (pilA) and adjacent genes (pilB,C,D), the twitching motility gene (pilT), and the sigma 54 RNA polymerase initiation factor gene (rpoN). One novel group of phage-resistant mutants was identified in which the transposon had inserted near sequences that cross-hybridized to an oligonucleotide probe designed against conserved domains in regulators of RpoN-dependent promoters. These mutants had no detectable transcription of pilA and did not produce fimbriae. A probe derived from inverse polymerase chain reaction was used to isolate the corresponding wild-type sequences from a P. aeruginosa PAO cosmid reference library, and two adjacent genes affected by transposon insertions, pilS and pilR, were located and sequenced. These genes were shown to be capable of complementing the corresponding mutants, both at the level of restoring the phenotypes associated with functional fimbriae and by the restoration of pilA transcription. The pilSR operon was physically mapped to Spel fragment 5 (corresponding to about 72-75/0 min on the genetic map), and shown to be located approximately 25 kb from pilA-D. PilS and PilR clearly belong to the family of two-component transcriptional regulatory systems which have been described in many bacterial species. PilS is predicted to be a sensor protein which when stimulated by the appropriate environmental signals activates PilR through kinase activity. PilR then activates transcription of pilA, probably by interacting with RNA polymerase containing RpoN. The identification of pilS and pilR makes possible a more thorough examination of the signal transduction systems controlling expression of virulence factors in P. aeruginosa

    Molluscan diversity caught by trawling fisheries: a case study in southern Portugal

    No full text
    The effects of commercial trawling on the malacological communities (except for the Cephalopoda) were examined, based on a study undertaken between 1996 and 2000 on the continental shelf and slope of southern Portugal. More than 50% of species caught by trawling in southern Portugal were discarded, with molluscs representing about 19%. Forty-four species of molluscs (15 bivalves, 28 gastropods and one polyplacophoran) were identified from the discarded specimens. Crustacean trawlers accounted for 34 molluscs species, and fish trawlers for 24. Twenty species were only caught by the crustacean trawl, compared with 10 species by the fish trawl, and 14 species were common to both trawls. The bivalve Venus nux Gmelin was the most numerous species discarded in the fish trawl, accounting for 42.0% of the total number of individuals, followed by the gastropods Ampulla priamus (Meuschen) (7.8%) and Ranella olearium (L.) (7.3%). In the crustacean trawl, the most numerous species discarded were the bivalve Anadara diluvii (Lamarck) (19.4%), the gastropod Calliostoma granulatum (Born) (15.5%), and the bivalve V. nux (15.1%). The third most discarded species from fish trawls in Algarve waters, the gastropod species R. olearium, is a species listed in Annex II of the Bern Convention. The difficulties of managing the real impact of fisheries on the molluscan populations and in defining a conservation strategy are discussed

    Comparing production-biomass ratios of benthos and suprabenthos in macrofaunal marine crustaceans

    Get PDF
    Using available data from the literature, we compared the productionbiomass ratios (P/B) between the suprabenthic (= hyperbenthic) and the benthic (infaunaepifauna) species within the group of the macrofaunal marine crustaceans. This data set consists of 91 P/B estimates (26 for suprabenthos and 65 for infaunaepifauna) for 49 different species. Suprabenthic crustacean P/B was significantly higher than P/B of benthic crustacean (post-hoc Scheffé test; one-way analysis of covariance, ANCOVA; p < 103) and also of other (noncrustacean) benthic invertebrate (p < 104). Predictive multilinear regression (MLR) analysis for macrofaunal marine crustaceans showed P/B to depend significantly on mean annual temperature (T) and mean individual weight (W) (R2 = 0.367). Adding the variable swimming capacity increased goodness-of-fit to R2 = 0.528. The higher P/B of suprabenthic (= swimming) macrofauna in comparison with that of the benthic compartment seems to be related to the most apparent feature of the suprabenthos, its swimming capacity. The high P/Bs reported for suprabenthic species indicate how a nontrivial part of benthic production can be ignored if suprabenthos is not well sampled, therefore biasing the models of energy flow generated for trophic webs
    corecore