10 research outputs found

    A New Human Somatic Stem Cell from Placental Cord Blood with Intrinsic Pluripotent Differentiation Potential

    Get PDF
    Here a new, intrinsically pluripotent, CD45-negative population from human cord blood, termed unrestricted somatic stem cells (USSCs) is described. This rare population grows adherently and can be expanded to 1015 cells without losing pluripotency. In vitro USSCs showed homogeneous differentiation into osteoblasts, chondroblasts, adipocytes, and hematopoietic and neural cells including astrocytes and neurons that express neurofilament, sodium channel protein, and various neurotransmitter phenotypes. Stereotactic implantation of USSCs into intact adult rat brain revealed that human Tau-positive cells persisted for up to 3 mo and showed migratory activity and a typical neuron-like morphology. In vivo differentiation of USSCs along mesodermal and endodermal pathways was demonstrated in animal models. Bony reconstitution was observed after transplantation of USSC-loaded calcium phosphate cylinders in nude rat femurs. Chondrogenesis occurred after transplanting cell-loaded gelfoam sponges into nude mice. Transplantation of USSCs in a noninjury model, the preimmune fetal sheep, resulted in up to 5% human hematopoietic engraftment. More than 20% albumin-producing human parenchymal hepatic cells with absence of cell fusion and substantial numbers of human cardiomyocytes in both atria and ventricles of the sheep heart were detected many months after USSC transplantation. No tumor formation was observed in any of these animals

    Modulation of Human Mesenchymal Stem Cell Immunogenicity through Forced Expression of Human Cytomegalovirus US Proteins

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSC) are promising candidates for cell therapy, as they migrate to areas of injury, differentiate into a broad range of specialized cells, and have immunomodulatory properties. However, MSC are not invisible to the recipient's immune system, and upon in vivo administration, allogeneic MSC are able to trigger immune responses, resulting in rejection of the transplanted cells, precluding their full therapeutic potential. Human cytomegalovirus (HCMV) has developed several strategies to evade cytotoxic T lymphocyte (CTL) and Natural Killer (NK) cell recognition. Our goal is to exploit HCMV immunological evasion strategies to reduce MSC immunogenicity. METHODOLOGY/PRINCIPAL FINDINGS: We genetically engineered human MSC to express HCMV proteins known to downregulate HLA-I expression, and investigated whether modified MSC were protected from CTL and NK attack. Flow cytometric analysis showed that amongst the US proteins tested, US6 and US11 efficiently reduced MSC HLA-I expression, and mixed lymphocyte reaction demonstrated a corresponding decrease in human and sheep mononuclear cell proliferation. NK killing assays showed that the decrease in HLA-I expression did not result in increased NK cytotoxicity, and that at certain NK∶MSC ratios, US11 conferred protection from NK cytotoxic effects. Transplantation of MSC-US6 or MSC-US11 into pre-immune fetal sheep resulted in increased liver engraftment when compared to control MSC, as demonstrated by qPCR and immunofluorescence analyses. CONCLUSIONS AND SIGNIFICANCE: These data demonstrate that engineering MSC to express US6 and US11 can be used as a means of decreasing recognition of MSC by the immune system, allowing higher levels of engraftment in an allogeneic transplantation setting. Since one of the major factors responsible for the failure of allogeneic-donor MSC to engraft is the mismatch of HLA-I molecules between the donor and the recipient, MSC-US6 and MSC-US11 could constitute an off-the-shelf product to overcome donor-recipient HLA-I mismatch

    Effect of Audiovisual Training on Monaural Spatial Hearing in Horizontal Plane

    Get PDF
    The article aims to test the hypothesis that audiovisual integration can improve spatial hearing in monaural conditions when interaural difference cues are not available. We trained one group of subjects with an audiovisual task, where a flash was presented in parallel with the sound and another group in an auditory task, where only sound from different spatial locations was presented. To check whether the observed audiovisual effect was similar to feedback, the third group was trained using the visual feedback paradigm. Training sessions were administered once per day, for 5 days. The performance level in each group was compared for auditory only stimulation on the first and the last day of practice. Improvement after audiovisual training was several times higher than after auditory practice. The group trained with visual feedback demonstrated a different effect of training with the improvement smaller than the group with audiovisual training. We conclude that cross-modal facilitation is highly important to improve spatial hearing in monaural conditions and may be applied to the rehabilitation of patients with unilateral deafness and after unilateral cochlear implantation

    EphB2 isolates a human marrow stromal cell subpopulation with enhanced ability to contribute to the resident intestinal cellular pool.

    No full text
    To identify human bone marrow stromal cell(BMSC) subsets with enhanced ability to engraft/contribute to the resident intestinal cellular pool, we transplanted clonally derived BMSCs into fetalsheep. Analysis at 75 d posttransplantation showed 2 of the 6 clones engrafting the intestine at 4­ to 5­fold higher levels (5.03±0.089 and 5.04±0.15%, respectively) than the other clones (P<0.01), correlating with the percentage of donor­derived Musashi­1 (12.01–14.17 vs. 1.2–3.8%; P<0.01) or leucine­rich repeat­containing G­protein coupled receptor 5 (Lgr5) cells within the intestinalstem cell(ISC) region. Phenotypic and transcriptome analysis determined that the clones with enhanced intestinal contribution expressed high levels of Ephrin type B receptor 2 (EphB2). Intestinal explants demonstrated proliferation of the engrafted cells and ability to generate crypt­like structures in vitro still expressing EphB2. Additional transplants based on BMSC EphB2 expression demonstrated that, at 7 d post­transplant, the EphB2 BMSCs engrafted in the ISC region at levels of 2.1 ± 0.2%, while control EphB2 BMSCs engrafted at 0.3 ± 0.1% (P<0.01). Therefore we identified a marker for isolating and culturing an expandable subpopulation of BMSCs with enhanced intestinal homing and contribution to the ISC region.— Colletti, E., El Shabrawy, D., Soland, M., Yamagami, T., Mokhtari, S., Osborne, C., Schlauch, K., Zanjani, E. D., Porada, C. D., Almeida­Porada, G. EphB2 isolates a human marrow stromal cellsubpopulation with enhanced ability to contribute to the resident intestinal cellular pool

    Factors Determining the Risk of Inadvertent Retroviral Transduction of Male Germ Cells After In Utero Gene Transfer in Sheep

    No full text
    The possibility of permanent genetic changes to the germline is central to the bioethics of in utero gene therapy (IUGT) because of the concern of inadvertent potentially deleterious alterations to the gene pool. Despite presumed protection of the male germline due to early germ cell (GC) compartmentalization, we reported that GCs within the developing ovine testes are transduced at low levels after retrovirus-mediated IUGT, thus underscoring the need for a thorough understanding of GC development in clinically predictive models to determine the optimal time to perform IUGT and avoid germline modification. In the present studies, we used the fetal sheep model to analyze GCs for phenotype, location, proliferation, and incidence of transduction after IUGT at various fetal ages to learn when during development the nascent germline is likely to be at greatest risk of retrovirus-mediated alteration. Our studies show that although GCs were transduced at all injection ages, the levels of transduction varied by nearly 700-fold as a function of the age at transfer. After remaining largely quiescent as they migrated to/settled within nascent sex cords, GCs began active cycling before cord closure was complete, suggesting this is likely the point at which they would be most susceptible to retroviral transduction. Furthermore, we observed that compartmentalization of GCs continued into early postnatal life, suggesting the male germline may be vulnerable to low-level inadvertent retroviral vector modification throughout fetal life, but that this risk can be minimized by performing IUGT later in gestation

    EphB2 isolates a human marrow stromal cell subpopulation with enhanced ability to contribute to the resident intestinal cellular pool

    No full text
    To identify human bone marrow stromal cell (BMSC) subsets with enhanced ability to engraft/contribute to the resident intestinal cellular pool, we transplanted clonally derived BMSCs into fetal sheep. Analysis at 75 d post-transplantation showed 2 of the 6 clones engrafting the intestine at 4- to 5-fold higher levels (5.03±0.089 and 5.04±0.15%, respectively) than the other clones (P<0.01), correlating with the percentage of donor-derived Musashi-1(+) (12.01–14.17 vs. 1.2–3.8%; P<0.01) or leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5)(+) cells within the intestinal stem cell (ISC) region. Phenotypic and transcriptome analysis determined that the clones with enhanced intestinal contribution expressed high levels of Ephrin type B receptor 2 (EphB2). Intestinal explants demonstrated proliferation of the engrafted cells and ability to generate crypt-like structures in vitro still expressing EphB2. Additional transplants based on BMSC EphB2 expression demonstrated that, at 7 d post-transplant, the EphB2(high) BMSCs engrafted in the ISC region at levels of 2.1 ± 0.2%, while control EphB2(low) BMSCs engrafted at 0.3 ± 0.1% (P<0.01). Therefore we identified a marker for isolating and culturing an expandable subpopulation of BMSCs with enhanced intestinal homing and contribution to the ISC region.—Colletti, E., El Shabrawy, D., Soland, M., Yamagami, T., Mokhtari, S., Osborne, C., Schlauch, K., Zanjani, E. D., Porada, C. D., Almeida-Porada, G. EphB2 isolates a human marrow stromal cell subpopulation with enhanced ability to contribute to the resident intestinal cellular pool
    corecore