2,843 research outputs found

    The Definition and Measurement of the Topological Entropy per Unit Volume in Parabolic PDE's

    Full text link
    We define the topological entropy per unit volume in parabolic PDE's such as the complex Ginzburg-Landau equation, and show that it exists, and is bounded by the upper Hausdorff dimension times the maximal expansion rate. We then give a constructive implementation of a bound on the inertial range of such equations. Using this bound, we are able to propose a finite sampling algorithm which allows (in principle) to measure this entropy from experimental data.Comment: 26 pages, 1 small figur

    Individual monitoring of immune responses in rainbow trout after cohabitation and intraperitoneal injection challenge with Yersinia ruckeri

    Get PDF
    Acknowledgements This work was funded by the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs, grant G1100675). The authors are grateful to the aquarium staff at the University of Aberdeen (Karen Massie) and Dr David Smail at Marine Scotland for valuable discussion during the establishment of the experimental design.Peer reviewedPostprin

    Complexity for extended dynamical systems

    Full text link
    We consider dynamical systems for which the spatial extension plays an important role. For these systems, the notions of attractor, epsilon-entropy and topological entropy per unit time and volume have been introduced previously. In this paper we use the notion of Kolmogorov complexity to introduce, for extended dynamical systems, a notion of complexity per unit time and volume which plays the same role as the metric entropy for classical dynamical systems. We introduce this notion as an almost sure limit on orbits of the system. Moreover we prove a kind of variational principle for this complexity.Comment: 29 page

    A numerical study of infinitely renormalizable area-preserving maps

    Full text link
    It has been shown in (Gaidashev et al, 2010) and (Gaidashev et al, 2011) that infinitely renormalizable area-preserving maps admit invariant Cantor sets with a maximal Lyapunov exponent equal to zero. Furthermore, the dynamics on these Cantor sets for any two infinitely renormalizable maps is conjugated by a transformation that extends to a differentiable function whose derivative is Holder continuous of exponent alpha>0. In this paper we investigate numerically the specific value of alpha. We also present numerical evidence that the normalized derivative cocycle with the base dynamics in the Cantor set is ergodic. Finally, we compute renormalization eigenvalues to a high accuracy to support a conjecture that the renormalization spectrum is real

    Using genotyping-by-sequencing to understand Musa diversity

    Get PDF
    Poster presented at Plant and Animal Genome, PAG XXII. San Diego (USA), 11-15 Jan 201

    Aperiodic Ising model on the Bethe lattice: Exact results

    Full text link
    We consider the Ising model on the Bethe lattice with aperiodic modulation of the couplings, which has been studied numerically in Phys. Rev. E 77, 041113 (2008). Here we present a relevance-irrelevance criterion and solve the critical behavior exactly for marginal aperiodic sequences. We present analytical formulae for the continuously varying critical exponents and discuss a relationship with the (surface) critical behavior of the aperiodic quantum Ising chain.Comment: 7 pages, 3 figures, minor correction

    Dynamical estimates of chaotic systems from Poincar\'e recurrences

    Full text link
    We show that the probability distribution function that best fits the distribution of return times between two consecutive visits of a chaotic trajectory to finite size regions in phase space deviates from the exponential statistics by a small power-law term, a term that represents the deterministic manifestation of the dynamics, which can be easily experimentally detected and theoretically estimated. We also provide simpler and faster ways to calculate the positive Lyapunov exponents and the short-term correlation function by either realizing observations of higher probable returns or by calculating the eigenvalues of only one very especial unstable periodic orbit of low-period. Finally, we discuss how our approaches can be used to treat data coming from complex systems.Comment: subm. for publication. Accepted fpr publication in Chao

    Dynamics of Triangulations

    Full text link
    We study a few problems related to Markov processes of flipping triangulations of the sphere. We show that these processes are ergodic and mixing, but find a natural example which does not satisfy detailed balance. In this example, the expected distribution of the degrees of the nodes seems to follow the power law d4d^{-4}
    corecore