We define the topological entropy per unit volume in parabolic PDE's such as
the complex Ginzburg-Landau equation, and show that it exists, and is bounded
by the upper Hausdorff dimension times the maximal expansion rate. We then give
a constructive implementation of a bound on the inertial range of such
equations. Using this bound, we are able to propose a finite sampling algorithm
which allows (in principle) to measure this entropy from experimental data.Comment: 26 pages, 1 small figur