83 research outputs found

    Increased circulating desmosine and age-dependent elastinolysis in idiopathic pulmonary fibrosis

    Full text link
    Abstract Although chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) seem to be opposite entities from a clinical perspective, common initial pathogenic steps have been suggested in both lung diseases. Emphysema is caused by an elastase/anti-elastase imbalance leading to accelerated elastin degradation. Elastinolysis is however, also accelerated in the IPF patients’ lungs. The amino acids desmosine and isodesmosine (DES) are unique to elastin. During the degradation process, elastases liberate DES from elastin fibers. Blood DES levels consequently reflect the rate of systemic elastinolysis and are increased in COPD. This is the first report describing elevated DES levels in IPF patients. We also demonstrated that the age-related increment of DES concentrations is enhanced in IPF. Our current study suggests that elastinolysis is a shared pathogenic step in both COPD and IPF. Further investigation is required to establish the relevance of accelerated elastin degradation in IPF and to determine whether decelerating this process leads to slower progression of lung fibrosis and better survival for patients with IPF.https://deepblue.lib.umich.edu/bitstream/2027.42/142803/1/12931_2018_Article_747.pd

    Whole lung lavage therapy for pulmonary alveolar proteinosis: a global survey of current practices and procedures

    Get PDF
    Background: Whole lung lavage (WLL) is the current standard of care treatment for patients affected by pulmonary alveolar proteinosis (PAP). However, WLL is not standardized and international consensus documents are lacking. Our aim was to obtain a factual portrayal of WLL as currently practiced with respect to the procedure, indications for its use, evaluation of therapeutic benefit and complication rate. Methods: A clinical practice survey was conducted globally by means of a questionnaire and included 27 centers performing WLL in pediatric and/or adult PAP patients. Results: We collected completed questionnaires from 20 centres in 14 countries, practicing WLL in adults and 10 centers in 6 countries, practicing WLL in pediatric patients. WLL is almost universally performed under general anesthesia, with a double-lumen endobronchial tube in two consecutive sessions, with an interval of 1-2 weeks between sessions in approximately 50 % of centres. The use of saline warmed to 37 degrees C, drainage of lung lavage fluid by gravity and indications for WLL therapy in PAP were homogenous across centres. There was great variation in the choice of the first lung to be lavaged: 50 % of centres based the choice on imaging, whereas 50 % always started with the left lung. The choice of position was also widely discordant;the supine position was chosen by 50 % of centres. Other aspects varied significantly among centres including contraindications, methods and timing of follow up, use of chest percussion, timing of extubation following WLL and lung isolation and lavage methods for small children. The amount of fluid used to perform the WLL is a critical aspect. Whilst a general consensus exists on the single aliquot of fluid for lavage (around 800 ml of warm saline, in adults) great variability exists in the total volume instilled per lung, ranging from 5 to 40 liters, with an average of 15.4 liters/lung. Conclusions: This international survey found that WLL is safe and effective as therapy for PAP. However these results also indicate that standardization of the procedure is required;the present survey represents the a first step toward building such a document

    Whole lung lavage therapy for pulmonary alveolar proteinosis: a global survey of current practices and procedures

    Get PDF
    Background: Whole lung lavage (WLL) is the current standard of care treatment for patients affected by pulmonary alveolar proteinosis (PAP). However, WLL is not standardized and international consensus documents are lacking. Our aim was to obtain a factual portrayal of WLL as currently practiced with respect to the procedure, indications for its use, evaluation of therapeutic benefit and complication rate. Methods: A clinical practice survey was conducted globally by means of a questionnaire and included 27 centers performing WLL in pediatric and/or adult PAP patients. Results: We collected completed questionnaires from 20 centres in 14 countries, practicing WLL in adults and 10 centers in 6 countries, practicing WLL in pediatric patients. WLL is almost universally performed under general anesthesia, with a double-lumen endobronchial tube in two consecutive sessions, with an interval of 1-2 weeks between sessions in approximately 50 % of centres. The use of saline warmed to 37 degrees C, drainage of lung lavage fluid by gravity and indications for WLL therapy in PAP were homogenous across centres. There was great variation in the choice of the first lung to be lavaged: 50 % of centres based the choice on imaging, whereas 50 % always started with the left lung. The choice of position was also widely discordant;the supine position was chosen by 50 % of centres. Other aspects varied significantly among centres including contraindications, methods and timing of follow up, use of chest percussion, timing of extubation following WLL and lung isolation and lavage methods for small children. The amount of fluid used to perform the WLL is a critical aspect. Whilst a general consensus exists on the single aliquot of fluid for lavage (around 800 ml of warm saline, in adults) great variability exists in the total volume instilled per lung, ranging from 5 to 40 liters, with an average of 15.4 liters/lung. Conclusions: This international survey found that WLL is safe and effective as therapy for PAP. However these results also indicate that standardization of the procedure is required;the present survey represents the a first step toward building such a document

    SNP Variants in Major Histocompatibility Complex Are Associate with Sarcoidosis Susceptibility - A Joint Analysis in Four European Populations

    Get PDF
    Sarcoidosis is a multiorgan inflammatory disorder with heritability estimates up to 66%. Previous studies have shown the major histocompatibility complex (MHC) region to be associated with sarcoidosis, suggesting a functional role for antigen-presenting molecules and immune mediators in the disease pathogenesis. To detect variants predisposing to sarcoidosis and to identify genetic differences between patient subgroups, we studied four genes in the MHC Class III region (LTA, TNF, AGER, BTNL2) and HLA-DRA with tag-SNPs and their relation to HLA-DRB1 alleles. We present results from a joint analysis of four study populations (Finnish, Swedish, Dutch, and Czech). Patients with sarcoidosis (n = 805) were further subdivided based on the disease activity and the presence of Lofgren's syndrome. In a joint analysis, seven SNPs were associated with non-Lofgren sarcoidosis (NL; the strongest association with rs3177928, P = 1.79E-07, OR = 1.9) and eight with Lofgren's syndrome [ Lofgren syndrome (LS); the strongest association with rs3129843, P = 3.44E-12, OR = 3.4] when compared with healthy controls (n = 870). Five SNPs were associated with sarcoidosis disease course (the strongest association with rs3177928, P = 0.003, OR = 1.9). The high linkage disequilibrium (LD) between SNPs and an HLA-DRB1 challenged the result interpretation. When the SNPs and HLA-DRB1 alleles were analyzed together, independent association was observed for four SNPs in the HLA-DRA/BTNL2 region: rs3135365 (NL; P = 0.015), rs3177928 (NL; P <0.001), rs6937545 (LS; P = 0.012), and rs5007259 (disease activity; P = 0.002). These SNPs act as expression quantitative trait loci (eQTL) for HLA-DRB1 and/or HLA-DRB5. In conclusion, we found novel SNPs in BTNL2 and HLA-DRA regions associating with sarcoidosis. Our finding further establishes that polymorphisms in the HLA-DRA and BTNL2 have a role in sarcoidosis susceptibility. This multi-population study demonstrates that at least a part of these associations are HLA-DRB1 independent (e.g., not due to LD) and shared across ancestral origins. The variants that were independent of HLA-DRB1 associations acted as eQTL for HLA-DRB1 and/or -DRB5, suggesting a role in regulating gene expression.Peer reviewe

    Evaluation of automated airway morphological quantification for assessing fibrosing lung disease

    Get PDF
    Abnormal airway dilatation, termed traction bronchiectasis, is a typical feature of idiopathic pulmonary fibrosis (IPF). Volumetric computed tomography (CT) imaging captures the loss of normal airway tapering in IPF. We postulated that automated quantification of airway abnormalities could provide estimates of IPF disease extent and severity. We propose AirQuant, an automated computational pipeline that systematically parcellates the airway tree into its lobes and generational branches from a deep learning based airway segmentation, deriving airway structural measures from chest CT. Importantly, AirQuant prevents the occurrence of spurious airway branches by thick wave propagation and removes loops in the airway-tree by graph search, overcoming limitations of existing airway skeletonisation algorithms. Tapering between airway segments (intertapering) and airway tortuosity computed by AirQuant were compared between 14 healthy participants and 14 IPF patients. Airway intertapering was significantly reduced in IPF patients, and airway tortuosity was significantly increased when compared to healthy controls. Differences were most marked in the lower lobes, conforming to the typical distribution of IPF-related damage. AirQuant is an open-source pipeline that avoids limitations of existing airway quantification algorithms and has clinical interpretability. Automated airway measurements may have potential as novel imaging biomarkers of IPF severity and disease extent

    Heterogeneity and Cancer-Related Features in Lymphangioleiomyomatosis Cells and Tissue

    Get PDF
    Lymphangioleiomyomatosis (LAM) is a rare, low-grade metastasizing disease characterized by cystic lung destruction. LAM can exhibit extensive heterogeneity at the molecular, cellular, and tissue levels. However, the molecular similarities and differences among LAM cells and tissue, and their connection to cancer features are not fully understood. By integrating complementary gene and protein LAM signatures, and single-cell and bulk tissue transcriptome profiles, we show sources of disease heterogeneity, and how they correspond to cancer molecular portraits. Subsets of LAM diseased cells differ with respect to gene expression profiles related to hormones, metabolism, proliferation, and stemness. Phenotypic diseased cell differences are identified by evaluating lumican (LUM) proteoglycan and YB1 transcription factor expression in LAM lung lesions. The RUNX1 and IRF1 transcription factors are predicted to regulate LAM cell signatures, and both regulators are expressed in LAM lung lesions, with differences between spindle-like and epithelioid LAM cells. The cancer single-cell transcriptome profiles most similar to those of LAM cells include a breast cancer mesenchymal cell model and lines derived from pleural mesotheliomas. Heterogeneity is also found in LAM lung tissue, where it is mainly determined by immune system factors. Variable expression of the multifunctional innate immunity protein LCN2 is linked to disease heterogeneity. This protein is found to be more abundant in blood plasma from LAM patients than from healthy women.This research was partially supported by AELAM (ICO-IDIBELL agreement, to M.A. Pujana), The LAM Foundation Seed Grant 2019, to M.A. Pujana, Carlos III Institute of Health grant PI18/01029, to M.A. Pujana and ICI19/00047 to M. Molina-Molina [co-funded by European Regional Development Fund (ERDF), a way to build Europe], Generalitat de Catalunya SGR grant 2017-449, to M.A. Pujana, the CERCA Program for IDIBELL institutional support, and ZonMW-TopZorg grant 842002003, to C.H.M. van Moorsel. M. Plass was supported by a “Ramón y Cajal” contract of the Spanish Ministry of Science and Innovation (RYC2018-024564-I) and J. Moss was supported by the Intramural Research Program of NIH/NHLBI

    Association between Variations in Cell Cycle Genes and Idiopathic Pulmonary Fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a devastating and progressive lung disease. Its aetiology is thought to involve damage to the epithelium and abnormal repair. Alveolar epithelial cells near areas of remodelling show an increased expression of proapoptotic molecules. Therefore, we investigated the role of genes involved in cell cycle control in IPF. Genotypes for five single nucleotide polymorphisms (SNPs) in the tumour protein 53 (TP53) gene and four SNPs in cyclin-dependent kinase inhibitor 1A (CDKN1A), the gene encoding p21, were determined in 77 IPF patients and 353 controls. In peripheral blood mononuclear cells (PBMC) from 16 healthy controls mRNA expression of TP53 and CDKN1A was determined

    Expression and production of the SERPING1-encoded endogenous complement regulator C1-inhibitor in multiple cohorts of tuberculosis patients

    Get PDF
    CITATION: Lubbers, R. et al. 2020. Expression and production of the SERPING1-encoded endogenous complement regulator C1-inhibitor in multiple cohorts of tuberculosis patients. Molecular Immunology, 120:187–195, doi:10.1016/j.molimm.2020.02.006.The original publication is available at https://www.sciencedirect.comBackground To facilitate better discrimination between patients with active tuberculosis (TB) and latent TB infection (LTBI), whole blood transcriptomic studies have been performed to identify novel candidate host biomarkers. SERPING1, which encodes C1-inhibitor (C1-INH), the natural inhibitor of the C1-complex has emerged as candidate biomarker. Here we collated and analysed SERPING1 expression data and subsequently determined C1-INH protein levels in four cohorts of patients with TB. Methods SERPING1 expression data were extracted from online deposited datasets. C1-INH protein levels were determined by ELISA in sera from individuals with active TB, LTBI as well as other disease controls in geographically diverse cohorts. Findings SERPING1 expression was increased in patients with active TB compared to healthy controls (8/11 cohorts), LTBI (13/14 cohorts) and patients with other (non-TB) lung-diseases (7/7 cohorts). Serum levels of C1-INH were significantly increased in The Gambia and Italy in patients with active TB relative to the endemic controls but not in South Africa or Korea. In the largest cohort (n = 50), with samples collected longitudinally, normalization of C1-INH levels following successful TB treatment was observed. This cohort, also showed the most abundant increase in C1-INH, and a positive correlation between C1q and C1-INH levels. Combined presence of increased levels of both C1q and C1-INH had high specificity for active TB (96 %) but only very modest sensitivity 38 % compared to the endemic controls. Interpretation SERPING1 transcript expression is increased in TB patients, while serum protein levels of C1-INH were increased in half of the cohorts analysed.Publisher's versio

    IL1RN genetic variations and risk of IPF: a meta-analysis and mRNA expression study

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a rare and devastating lung disease of unknown aetiology. Genetic variations in the IL1RN gene, encoding the interleukin-1 receptor antagonist (IL-1Ra), have been associated with IPF susceptibility. Several studies investigated the variable number tandem repeat (VNTR) or single nucleotide polymorphisms rs408392, rs419598 and rs2637988, with variable results. The aim of this study was to elucidate the influence of polymorphisms in IL1RN on IPF susceptibility and mRNA expression. We performed a meta-analysis of the five case–control studies that investigated an IL1RN polymorphism in IPF in a Caucasian population. In addition, we investigated whether IL1RN mRNA expression was influenced by IL1RN polymorphisms. The VNTR, rs408392 and rs419598 were in tight linkage disequilibrium, with D′ > 0.99. Furthermore, rs2637988 was in linkage disequilibrium with the VNTR (D′ = 0.90). A haploblock of VNTR*2 and the minor alleles of rs408392and rs419598 was constructed. Meta-analysis revealed that this VNTR*2 haploblock is associated with IPF susceptibility both with an allelic model (odds ratio = 1.42, p = 0.002) and a carriership model (odds ratio = 1.60, p = 0.002). IL1RN mRNA expression was significantly influenced by rs2637988, with lower levels found in carriers of the (minor) GG genotype (p < 0.001). From this meta-analysis, we conclude that the VNTR*2 haploblock is associated with susceptibility to IPF. In addition, polymorphisms in IL1RN influence IL-1Ra mRNA expression, suggesting that lower levels of IL-1Ra predispose to developing IPF. Together these findings demonstrate that the cytokine IL-1Ra plays a role in IPF pathogenesis

    Expression and production of the SERPING1-encoded endogenous complement regulator C1-inhibitor in multiple cohorts of tuberculosis patients.

    Get PDF
    BACKGROUND: To facilitate better discrimination between patients with active tuberculosis (TB) and latent TB infection (LTBI), whole blood transcriptomic studies have been performed to identify novel candidate host biomarkers. SERPING1, which encodes C1-inhibitor (C1-INH), the natural inhibitor of the C1-complex has emerged as candidate biomarker. Here we collated and analysed SERPING1 expression data and subsequently determined C1-INH protein levels in four cohorts of patients with TB. METHODS: SERPING1 expression data were extracted from online deposited datasets. C1-INH protein levels were determined by ELISA in sera from individuals with active TB, LTBI as well as other disease controls in geographically diverse cohorts. FINDINGS: SERPING1 expression was increased in patients with active TB compared to healthy controls (8/11 cohorts), LTBI (13/14 cohorts) and patients with other (non-TB) lung-diseases (7/7 cohorts). Serum levels of C1-INH were significantly increased in The Gambia and Italy in patients with active TB relative to the endemic controls but not in South Africa or Korea. In the largest cohort (n = 50), with samples collected longitudinally, normalization of C1-INH levels following successful TB treatment was observed. This cohort, also showed the most abundant increase in C1-INH, and a positive correlation between C1q and C1-INH levels. Combined presence of increased levels of both C1q and C1-INH had high specificity for active TB (96 %) but only very modest sensitivity 38 % compared to the endemic controls. INTERPRETATION: SERPING1 transcript expression is increased in TB patients, while serum protein levels of C1-INH were increased in half of the cohorts analysed
    corecore