572 research outputs found

    Ranolazine Effects on NaV1.2 and Modulation by pH

    Get PDF

    Effects of acidosis on neuronal voltage-gated sodium channels: Nav1.1 and Nav1.3

    Get PDF
    Voltage-gated sodium channels are key contributors to membrane excitability. These channels are expressed in a tissue-specific manner. Mutations and modulation of these channels underlie various physiological and pathophysiological manifestations. The effects of changes in extracellular pH on channel gating have been studied on several sodium channel subtypes. Among these, Nav1.5 is the most pH-sensitive channel, with Nav1.2 and Nav1.4 being mostly pH-resistant channels. However, pH effects have not been characterized on other sodium channel subtypes. In this study, we sought to determine whether Nav1.1 and Nav1.3 display resistance or sensitivity to changes in extracellular pH. These two sodium channel subtypes are predominantly found in inhibitory neurons. The expression of these channels highly depends on age and the developmental stage of neurons, with Nav1.3 being found mostly in neonatal neurons, and Nav1.1 being found in adult neurons. Our present results indicate that, during extracellular acidosis, both channels show a depolarization in the voltage-dependence of activation and moderate reduction in current density. Voltage-dependence of steady-state fast inactivation and recovery from fast inactivation were unchanged. We conclude that Nav1.1 and Nav1.3 have similar pH-sensitivities

    Acidosis Differentially Modulates Inactivation in NaV1.2, NaV1.4, and NaV1.5 Channels

    Get PDF
    NaV channels play a crucial role in neuronal and muscle excitability. Using whole-cell recordings we studied effects of low extracellular pH on the biophysical properties of NaV1.2, NaV1.4, and NaV1.5, expressed in cultured mammalian cells. Low pH produced different effects on different channel subtypes. Whereas NaV1.4 exhibited very low sensitivity to acidosis, primarily limited to partial block of macroscopic currents, the effects of low pH on gating in NaV1.2 and NaV1.5 were profound. In NaV1.2 low pH reduced apparent valence of steady-state fast inactivation, shifted the τ(V) to depolarizing potentials and decreased channels availability during onset to slow and use-dependent inactivation (UDI). In contrast, low pH delayed open-state inactivation in NaV1.5, right-shifted the voltage-dependence of window current, and increased channel availability during onset to slow and UDI. These results suggest that protons affect channel availability in an isoform-specific manner. A computer model incorporating these results demonstrates their effects on membrane excitability

    A Mixed Periodic Paralysis & Myotonia Mutant, P1158S, Imparts pH-Sensitivity in Skeletal Muscle Voltage-gated Sodium Channels

    Get PDF
    Skeletal muscle channelopathies, many of which are inherited as autosomal dominant mutations, include myotonia and periodic paralysis. Myotonia is defined by a delayed relaxation after muscular contraction, whereas periodic paralysis is defined by episodic attacks of weakness. One sub-type of periodic paralysis, known as hypokalemic periodic paralysis (hypoPP), is associated with low potassium levels. Interestingly, the P1158S missense mutant, located in the third domain S4-S5 linker of the “skeletal muscle”, Nav1.4, has been implicated in causing both myotonia and hypoPP. A common trigger for these conditions is physical activity. We previously reported that Nav1.4 is relatively insensitive to changes in extracellular pH compared to Nav1.2 and Nav1.5. Given that intense exercise is often accompanied by blood acidosis, we decided to test whether changes in pH would push gating in P1158S towards either phenotype. Our results suggest that, unlike in WT-Nav1.4, low pH depolarizes the voltage-dependence of activation and steady-state fast inactivation, decreases current density, and increases late currents in P1185S. Thus, P1185S turns the normally pH-insensitive Nav1.4 into a proton-sensitive channel. Using action potential modeling we predict a pH-to-phenotype correlation in patients with P1158S. We conclude that activities which alter blood pH may trigger the noted phenotypes in P1158S patients

    The L1624Q Variant in SCN1A Causes Familial Epilepsy Through a Mixed Gain and Loss of Channel Function

    Get PDF
    Variants of the SCN1A gene encoding the neuronal voltage-gated sodium channel NaV1.1 cause over 85% of all cases of Dravet syndrome, a severe and often pharmacoresistent epileptic encephalopathy with mostly infantile onset. But with the increased availability of genetic testing for patients with epilepsy, variants in SCN1A have now also been described in a range of other epilepsy phenotypes. The vast majority of these epilepsy-associated variants are de novo, and most are either nonsense variants that truncate the channel or missense variants that are presumed to cause loss of channel function. However, biophysical analysis has revealed a significant subset of missense mutations that result in increased excitability, further complicating approaches to precision pharmacotherapy for patients with SCN1A variants and epilepsy. We describe clinical and biophysical data of a familial SCN1A variant encoding the NaV1.1 L1624Q mutant. This substitution is located on the extracellular linker between S3 and S4 of Domain IV of NaV1.1 and is a rare case of a familial SCN1A variant causing an autosomal dominant frontal lobe epilepsy. We expressed wild-type (WT) and L1642Q channels in CHO cells. Using patch-clamp to characterize channel properties at several temperatures, we show that the L1624Q variant increases persistent current, accelerates fast inactivation onset and decreases current density. While SCN1A-associated epilepsy is typically considered a loss-of-function disease, our results put L1624Q into a growing set of mixed gain and loss-of-function variants in SCN1A responsible for epilepsy

    Impact of high water pressure on oil generation and maturation in Kimmeridge Clay and Monterey source rocks: implications for petroleum retention and gas generation in shale gas systems

    Get PDF
    This study presents results for pyrolysis experiments conducted on immature Type II and IIs source rocks (Kimmeridge Clay, Dorset UK, and Monterey shale, California, USA respectively) to investigate the impact of high water pressure on source rock maturation and petroleum (oil and gas) generation. Using a 25 ml Hastalloy vessel, the source rocks were pyrolysed at low (180 and 245 bar) and high (500, 700 and 900 bar) water pressure hydrous conditions at 350 °C and 380 °C for between 6 and 24 h. For the Kimmeridge Clay (KCF) at 350 °C, Rock Eval HI of the pyrolysed rock residues were 30–44 mg/g higher between 6 h and 12 h at 900 bar than at 180 bar. Also at 350 °C for 24 h the gas, expelled oil, and vitrinite reflectance (VR) were all reduced by 46%, 61%, and 0.25% Ro respectively at 900 bar compared with 180 bar. At 380 °C the retardation effect of pressure on the KCF was less significant for gas generation. However, oil yield and VR were reduced by 47% and 0.3% Ro respectively, and Rock Eval HI was also higher by 28 mg/g at 900 bar compared with 245 bar at 12 h. The huge decrease in gas and oil yields and the VR observed with an increase in water pressure at 350 °C for 24 h and 380 °C for 12 h (maximum oil generation) were also observed for all other times and temperatures investigated for the KCF and the Monterey shale. This shows that high water pressure significantly retards petroleum generation and source rock maturation. The retardation of oil generation and expulsion resulted in significant amounts of bitumen and oil being retained in the rocks pyrolysed at high pressures, suggesting that pressure is a possible mechanism for retaining petroleum (bitumen and oil) in source rocks. This retention of petroleum within the rock provides a mechanism for oil-prone source rocks to become potential shale gas reservoirs. The implications from this study are that in geological basins, pressure, temperature and time will all exert significant control on the extent of petroleum generation and source rock maturation for Type II source rocks, and that the petroleum retained in the rocks at high pressures may explain in part why oil-prone source rocks contain the most prolific shale gas resources

    Proceedings of the third international molecular pathological epidemiology (MPE) meeting

    Get PDF
    Molecular pathological epidemiology (MPE) is a transdisciplinary and relatively new scientific discipline that integrates theory, methods and resources from epidemiology, pathology, biostatistics, bioinformatics and computational biology. The underlying objective of MPE research is to better understand the etiology and progression of complex and heterogeneous human diseases with the goal of informing prevention and treatment efforts in population health and clinical medicine. Although MPE research has been commonly applied to investigating breast, lung, and colorectal cancers, its methodology can be used to study most diseases. Recent successes in MPE studies include: 1) the development of new statistical methods to address etiologic heterogeneity; 2) the enhancement of causal inference; 3) the identification of previously unknown exposure-subtype disease associations; and 4) better understanding of the role of lifestyle/behavioral factors on modifying prognosis according to disease subtype. Central challenges to MPE include the relative lack of transdisciplinary experts, educational programs, and forums to discuss issues related to the advancement of the field. To address these challenges, highlight recent successes in the field, and identify new opportunities, a series of MPE meetings have been held at the Dana-Farber Cancer Institute in Boston, MA. Herein, we share the proceedings of the Third International MPE Meeting, held in May 2016 and attended by 150 scientists from 17 countries. Special topics included integration of MPE with immunology and health disparity research. This meeting series will continue to provide an impetus to foster further transdisciplinary integration of divergent scientific fields

    The transformation of the business angel market: empirical evidence and research implications

    Get PDF
    Business angel investing – a key source of finance for entrepreneurial businesses – is rapidly evolving from a fragmented and largely anonymous activity dominated by individuals investing on their own to one that is increasingly characterised by groups of investors investing together through managed angel groups. The implications of this change have been largely ignored by scholars. The paper examines the investment activity and operation of angel groups in Scotland to highlight the implications of this change for the nature of angel investing. It goes on to argue that this transformation challenges both the ongoing relevance of prior research on business angels and current methodological practices, and raises a set of new research questions
    corecore