4 research outputs found
An ancestral molecular response to nanomaterial particulates
The varied transcriptomic response to nanoparticles has hampered the understanding of the mechanism of action. Here, by performing a meta-analysis of a large collection of transcriptomics data from various engineered nanoparticle exposure studies, we identify common patterns of gene regulation that impact the transcriptomic response. Analysis identifies deregulation of immune functions as a prominent response across different exposure studies. Looking at the promoter regions of these genes, a set of binding sites for zinc finger transcription factors C2H2, involved in cell stress responses, protein misfolding and chromatin remodelling and immunomodulation, is identified. The model can be used to explain the outcomes of mechanism of action and is observed across a range of species indicating this is a conserved part of the innate immune system.Peer reviewe
Targeted pruning of a neuron’s dendritic tree via femtosecond laser dendrotomy
Neurons are classified according to action potential firing in response to current injection. While such firing patterns are shaped by the composition and distribution of ion channels, modelling studies suggest that the geometry of dendritic branches also influences temporal firing patterns. Verifying this link is crucial to understanding how neurons transform their inputs to output but has so far been technically challenging. Here, we investigate branching-dependent firing by pruning the dendritic tree of pyramidal neurons. We use a focused ultrafast laser to achieve highly localized and minimally invasive cutting of dendrites, thus keeping the rest of the dendritic tree intact and the neuron functional. We verify successful dendrotomy via two-photon uncaging of neurotransmitters before and after dendrotomy at sites around the cut region and via biocytin staining. Our results show that significantly altering the dendritic arborisation, such as by severing the apical trunk, enhances excitability in layer V cortical pyramidal neurons as predicted by simulations. This method may be applied to the analysis of specific relationships between dendritic structure and neuronal function. The capacity to dynamically manipulate dendritic topology or isolate inputs from various dendritic domains can provide a fresh perspective on the roles they play in shaping neuronal output
Ultrasonic exploration of vacancy centres with the Jahn–Teller effect. Application to the ZnSe crystal
We show that the structure, properties, and concentration of vacancies in crystals can be studied by ultrasonic experiments previously employed for impurity centres only. Measurements of the temperature dependence of attenuation and phase velocities of ultrasonic shear waves of 52MHz propagating along the crystallographic axis [110] of nominally pure ZnSe single crystals (grown by the seeded physical vapour transport method) show strong anomalies which are typical for relaxation processes in system with isolated Jahn-Teller (JT) centres. The observed JT distortion mode is trigonal, subject to a threefold orbitally degenerate T-term interaction with trigonal and tetragonal nuclear displacements. In the absence of sufficiently high concentrations of impurity atoms with such properties we attributed the observed JT centres to zinc vacancies. The temperature dependence of the isothermal and adiabatic forms of the appropriate elastic modulus and the relaxation time show that the relaxation mechanism changes from thermal activation at higher temperatures to tunnelling through a potential energy barrier below 18K. We provide an estimate of the magnitude of the potential barrier, as well as the pseudorotation frequency and concentration of vacancies. Also we determine the extremum points of the adiabatic potential energy surface of the vacancy centre. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim