169 research outputs found

    The triune of intestinal microbiome, genetics and inflammatory status and its impact on lower gastrointestinal anastomosis healing

    Get PDF
    Gastrointestinal resections are a common operation and most involve an anastomosis to re-join the ends of the remaining bowel to restore gastrointestinal (GIT) continuity. While most joins heal uneventfully, in up to 26% of patients healing fails and an anastomotic leak (AL) develops. Despite advances in surgical technology and techniques, the rate of anastomotic leaks has not decreased over the last few decades raising the possibility that perhaps we do not yet fully understand this phenomenon of AL and are thus ill-equipped to prevent it. As in all complex conditions it is necessary to isolate each different aspect of disease for interrogation of its specific role, but, as we hope to demonstrate in this article, it is a dangerous oversimplification to consider any single aspect as the full answer to the problem. Instead, consideration of important individual observations in parallel could illuminate the way forward toward a possibly simple solution amidst the complexity. This article details three aspects that we believe intertwine, and therefore should be considered together in wound healing within the GIT, during post-surgical recovery: the microbiome, the host genetic makeup, and their relationship to the peri-operative inflammatory status. Each of these, alone or in combination, has been linked with various states of health and disease, and in combining these three aspects in the case of post-operative recovery from bowel resection, we may be nearer an answer to preventing anastomotic leaks than might have been thought just a few years ago

    Inhibition of Hippocampal Synaptic Activity by ATP, Hypoxia or Oxygen-Glucose Deprivation Does Not Require CD73

    Get PDF
    Adenosine, through activation of its A1 receptors, has neuroprotective effects during hypoxia and ischemia. Recently, using transgenic mice with neuronal expression of human equilibrative nucleoside transporter 1 (hENT1), we reported that nucleoside transporter-mediated release of adenosine from neurons was not a key mechanism facilitating the actions of adenosine at A1 receptors during hypoxia/ischemia. The present study was performed to test the importance of CD73 (ecto-5′-nucleotidase) for basal and hypoxic/ischemic adenosine production. Hippocampal slice electrophysiology was performed with CD73+/+ and CD73−/− mice. Adenosine and ATP had similar inhibitory effects in both genotypes, with IC50 values of approximately 25 µM. In contrast, ATP was a less potent inhibitor (IC50 = 100 µM) in slices from mice expressing hENT1 in neurons. The inhibitory effects of ATP in CD73+/+ and CD73−/− slices were blocked by the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and were enhanced by the nucleoside transport inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBTI), consistent with effects that are mediated by adenosine after metabolism of ATP. AMP showed a similar inhibitory effect to ATP and adenosine, indicating that the response to ATP was not mediated by P2 receptors. In comparing CD73−/− and CD73+/+ slices, hypoxia and oxygen-glucose deprivation produced similar depression of synaptic transmission in both genotypes. An inhibitor of tissue non-specific alkaline phosphatase (TNAP) was found to attenuate the inhibitory effects of AMP and ATP, increase basal synaptic activity and reduce responses to oxygen-glucose deprivation selectively in slices from CD73−/− mice. These results do not support an important role for CD73 in the formation of adenosine in the CA1 area of the hippocampus during basal, hypoxic or ischemic conditions, but instead point to TNAP as a potential source of extracellular adenosine when CD73 is absent

    REST mediates resolution of HIF-dependent gene expression in prolonged hypoxia

    Get PDF
    The hypoxia-inducible factor (HIF) is a key regulator of the cellular response to hypoxia which promotes oxygen delivery and metabolic adaptation to oxygen deprivation. However, the degree and duration of HIF-1α expression in hypoxia must be carefully balanced within cells in order to avoid unwanted side effects associated with excessive activity. The expression of HIF-1α mRNA is suppressed in prolonged hypoxia, suggesting that the control of HIF1A gene transcription is tightly regulated by negative feedback mechanisms. Little is known about the resolution of the HIF-1α protein response and the suppression of HIF-1α mRNA in prolonged hypoxia. Here, we demonstrate that the Repressor Element 1-Silencing Transcription factor (REST) binds to the HIF-1α promoter in a hypoxia-dependent manner. Knockdown of REST using RNAi increases the expression of HIF-1α mRNA, protein and transcriptional activity. Furthermore REST knockdown increases glucose consumption and lactate production in a HIF-1α- (but not HIF-2α-) dependent manner. Finally, REST promotes the resolution of HIF-1α protein expression in prolonged hypoxia. In conclusion, we hypothesize that REST represses transcription of HIF-1α in prolonged hypoxia, thus contributing to the resolution of the HIF-1α response

    The Volatile Anesthetic Isoflurane Increases Endothelial Adenosine Generation via Microparticle Ecto-5′-Nucleotidase (CD73) Release

    Get PDF
    Endothelial dysfunction is common in acute and chronic organ injury. Isoflurane is a widely used halogenated volatile anesthetic during the perioperative period and protects against endothelial cell death and inflammation. In this study, we tested whether isoflurane induces endothelial ecto-5′-nucleotidase (CD73) and cytoprotective adenosine generation to protect against endothelial cell injury. Clinically relevant concentrations of isoflurane induced CD73 activity and increased adenosine generation in cultured human umbilical vein or mouse glomerular endothelial cells. Surprisingly, isoflurane-mediated induction of endothelial CD73 activity occurred within 1 hr and without synthesizing new CD73. We determined that isoflurane rapidly increased CD73 containing endothelial microparticles into the cell culture media. Indeed, microparticles isolated from isoflurane-treated endothelial cells had significantly higher CD73 activity as well as increased CD73 protein. In vivo, plasma from mice anesthetized with isoflurane had significantly higher endothelial cell-derived CD144+ CD73+ microparticles and had increased microparticle CD73 activity compared to plasma from pentobarbital-anesthetized mice. Supporting a critical role of CD73 in isoflurane-mediated endothelial protection, a selective CD73 inhibitor (APCP) prevented isoflurane-induced protection against human endothelial cell inflammation and apoptosis. In addition, isoflurane activated endothelial cells Rho kinase evidenced by myosin phosphatase target subunit-1 and myosin light chain phosphorylation. Furthermore, isoflurane-induced release of CD73 containing microparticles was significantly attenuated by a selective Rho kinase inhibitor (Y27632). Taken together, we conclude that the volatile anesthetic isoflurane causes Rho kinase-mediated release of endothelial microparticles containing preformed CD73 and increase adenosine generation to protect against endothelial apoptosis and inflammation

    Physiological roles for ecto-5’-nucleotidase (CD73)

    Get PDF
    Nucleotides and nucleosides influence nearly every aspect of physiology and pathophysiology. Extracellular nucleotides are metabolized through regulated phosphohydrolysis by a series of ecto-nucleotidases. The formation of extracellular adenosine from adenosine 5’-monophosphate is accomplished primarily through ecto-5’-nucleotidase (CD73), a glycosyl phosphatidylinositol-linked membrane protein found on the surface of a variety of cell types. Recent in vivo studies implicating CD73 in a number of tissue protective mechanisms have provided new insight into its regulation and function and have generated considerable interest. Here, we review contributions of CD73 to cell and tissue stress responses, with a particular emphasis on physiologic responses to regulated CD73 expression and function, as well as new findings utilizing Cd73-deficient animals

    Acute appendicitis: transcript profiling of blood identifies promising biomarkers and potential underlying processes

    Get PDF
    Background The diagnosis of acute appendicitis can be surprisingly difficult without computed tomography, which carries significant radiation exposure. Circulating blood cells may carry informative changes in their RNA expression profile that would signal internal infection or inflammation of the appendix. Methods Genome-wide expression profiling was applied to whole blood RNA of acute appendicitis patients versus patients with other abdominal disorders, in order to identify biomarkers of appendicitis. From a large cohort of emergency patients, a discovery set of patients with surgically confirmed appendicitis, or abdominal pain from other causes, was identified. RNA from whole blood was profiled by microarrays, and RNA levels were filtered by a combined fold-change (\u3e2) and p value (\u3c0.05). A separate set of patients, including patients with respiratory infections, was used to validate a partial least squares discriminant (PLSD) prediction model. Results Transcript profiling identified 37 differentially expressed genes (DEG) in appendicitis versus abdominal pain patients. The DEG list contained 3 major ontologies: infection-related, inflammation-related, and ribosomal processing. Appendicitis patients had lower level of neutrophil defensin mRNA (DEFA1,3), but higher levels of alkaline phosphatase (ALPL) and interleukin-8 receptor-ß (CXCR2/IL8RB), which was confirmed in a larger cohort of 60 patients using droplet digital PCR (ddPCR). Conclusions Patients with acute appendicitis have detectable changes in the mRNA expression levels of factors related to neutrophil innate defense systems. The low defensin mRNA levels suggest that appendicitis patient’s immune cells are not directly activated by pathogens, but are primed by diffusible factors in the microenvironment of the infection. The detected biomarkers are consistent with prior evidence that biofilm-forming bacteria in the appendix may be an important factor in appendicitis
    corecore