5,065 research outputs found

    Detecting Pulsars with Interstellar Scintillation in Variance Images

    Full text link
    Pulsars are the only cosmic radio sources known to be sufficiently compact to show diffractive interstellar scintillations. Images of the variance of radio signals in both time and frequency can be used to detect pulsars in large-scale continuum surveys using the next generation of synthesis radio telescopes. This technique allows a search over the full field of view while avoiding the need for expensive pixel-by-pixel high time resolution searches. We investigate the sensitivity of detecting pulsars in variance images. We show that variance images are most sensitive to pulsars whose scintillation time-scales and bandwidths are close to the subintegration time and channel bandwidth. Therefore, in order to maximise the detection of pulsars for a given radio continuum survey, it is essential to retain a high time and frequency resolution, allowing us to make variance images sensitive to pulsars with different scintillation properties. We demonstrate the technique with Murchision Widefield Array data and show that variance images can indeed lead to the detection of pulsars by distinguishing them from other radio sources.Comment: 8 papes, 9 figures, accepted for publication in MNRA

    Universal Asymptotic Statistics of Maximal Relative Height in One-dimensional Solid-on-solid Models

    Full text link
    We study the probability density function P(hm,L)P(h_m,L) of the maximum relative height hmh_m in a wide class of one-dimensional solid-on-solid models of finite size LL. For all these lattice models, in the large LL limit, a central limit argument shows that, for periodic boundary conditions, P(hm,L)P(h_m,L) takes a universal scaling form P(hm,L)(12wL)1f(hm/(12wL))P(h_m,L) \sim (\sqrt{12}w_L)^{-1}f(h_m/(\sqrt{12} w_L)), with wLw_L the width of the fluctuating interface and f(x)f(x) the Airy distribution function. For one instance of these models, corresponding to the extremely anisotropic Ising model in two dimensions, this result is obtained by an exact computation using transfer matrix technique, valid for any L>0L>0. These arguments and exact analytical calculations are supported by numerical simulations, which show in addition that the subleading scaling function is also universal, up to a non universal amplitude, and simply given by the derivative of the Airy distribution function f(x)f'(x).Comment: 13 pages, 4 figure

    One-point Statistics of the Cosmic Density Field in Real and Redshift Spaces with A Multiresolutional Decomposition

    Get PDF
    In this paper, we develop a method of performing the one-point statistics of a perturbed density field with a multiresolutional decomposition based on the discrete wavelet transform (DWT). We establish the algorithm of the one-point variable and its moments in considering the effects of Poisson sampling and selection function. We also establish the mapping between the DWT one-point statistics in redshift space and real space, i.e. the algorithm for recovering the DWT one-point statistics from the redshift distortion of bulk velocity, velocity dispersion, and selection function. Numerical tests on N-body simulation samples show that this algorithm works well on scales from a few hundreds to a few Mpc/h for four popular cold dark matter models. Taking the advantage that the DWT one-point variable is dependent on both the scale and the shape (configuration) of decomposition modes, one can design estimators of the redshift distortion parameter (beta) from combinations of DWT modes. When the non-linear redshift distortion is not negligible, the beta estimator from quadrupole-to-monopole ratio is a function of scale. This estimator would not work without adding information about the scale-dependence, such as the power-spectrum index or the real-space correlation function of the random field. The DWT beta estimators, however, do not need such extra information. Numerical tests show that the proposed DWT estimators are able to determine beta robustly with less than 15% uncertainty in the redshift range 0 < z < 3.Comment: 39 pages, 12 figures, ApJ accepte

    Level density of a Fermi gas and integer partitions: a Gumbel-like finite-size correction

    Full text link
    We investigate the many-body level density of gas of non-interacting fermions. We determine its behavior as a function of the temperature and the number of particles. As the temperature increases, and beyond the usual Sommerfeld expansion that describes the degenerate gas behavior, corrections due to a finite number of particles lead to Gumbel-like contributions. We discuss connections with the partition problem in number theory, extreme value statistics as well as differences with respect to the Bose gas.Comment: 5 pages, 1 figure, one figure added, accepted for publication in Phys. Rev.

    The intermittent behavior and hierarchical clustering of the cosmic mass field

    Get PDF
    The hierarchical clustering model of the cosmic mass field is examined in the context of intermittency. We show that the mass field satisfying the correlation hierarchy ξnQn(ξ2)n1\xi_n\simeq Q_n(\xi_2)^{n-1} is intermittent if κ<d\kappa < d, where dd is the dimension of the field, and κ\kappa is the power-law index of the non-linear power spectrum in the discrete wavelet transform (DWT) representation. We also find that a field with singular clustering can be described by hierarchical clustering models with scale-dependent coefficients QnQ_n and that this scale-dependence is completely determined by the intermittent exponent and κ\kappa. Moreover, the singular exponents of a field can be calculated by the asymptotic behavior of QnQ_n when nn is large. Applying this result to the transmitted flux of HS1700 Lyα\alpha forests, we find that the underlying mass field of the Lyα\alpha forests is significantly intermittent. On physical scales less than about 2.0 h1^{-1} Mpc, the observed intermittent behavior is qualitatively different from the prediction of the hierarchical clustering with constant QnQ_n. The observations, however, do show the existence of an asymptotic value for the singular exponents. Therefore, the mass field can be described by the hierarchical clustering model with scale-dependent QnQ_n. The singular exponent indicates that the cosmic mass field at redshift 2\sim 2 is weakly singular at least on physical scales as small as 10 h1^{-1} kpc.Comment: AAS Latex file, 33 pages,5 figures included, accepted for publication in Ap

    The quantum inflaton, primordial perturbations and CMB fluctuations

    Full text link
    We compute the primordial scalar, vector and tensor metric perturbations arising from quantum field inflation. Quantum field inflation takes into account the nonperturbative quantum dynamics of the inflaton consistently coupled to the dynamics of the (classical) cosmological metric. For chaotic inflation, the quantum treatment avoids the unnatural requirements of an initial state with all the energy in the zero mode. For new inflation it allows a consistent treatment of the explosive particle production due to spinodal instabilities. Quantum field inflation (under conditions that are the quantum analog of slow roll) leads, upon evolution, to the formation of a condensate starting a regime of effective classical inflation. We compute the primordial perturbations taking the dominant quantum effects into account. The results for the scalar, vector and tensor primordial perturbations are expressed in terms of the classical inflation results. For a N-component field in a O(N) symmetric model, adiabatic fluctuations dominate while isocurvature or entropy fluctuations are negligible. The results agree with the current WMAP observations and predict corrections to the power spectrum in classical inflation.Such corrections are estimated to be of the order of m^2/[N H^2] where m is the inflaton mass and H the Hubble constant at horizon crossing. This turns to be about 4% for the cosmologically relevant scales. This quantum field treatment of inflation provides the foundations to the classical inflation and permits to compute quantum corrections to it.Comment: 23 pages, no figures. Improved version to appear in Phys. Rev.

    Identifying short motifs by means of extreme value analysis

    Full text link
    The problem of detecting a binding site -- a substring of DNA where transcription factors attach -- on a long DNA sequence requires the recognition of a small pattern in a large background. For short binding sites, the matching probability can display large fluctuations from one putative binding site to another. Here we use a self-consistent statistical procedure that accounts correctly for the large deviations of the matching probability to predict the location of short binding sites. We apply it in two distinct situations: (a) the detection of the binding sites for three specific transcription factors on a set of 134 estrogen-regulated genes; (b) the identification, in a set of 138 possible transcription factors, of the ones binding a specific set of nine genes. In both instances, experimental findings are reproduced (when available) and the number of false positives is significantly reduced with respect to the other methods commonly employed.Comment: 6 pages, 5 figure

    Impact of Inhibition of Glutamine and Alanine Transport on Cerebellar Glial and Neuronal Metabolism

    Full text link
    The cerebellum, or “little brain”, is often overlooked in studies of brain metabolism in favour of the cortex. Despite this, anomalies in cerebellar amino acid homeostasis in a range of disorders have been reported. Amino acid homeostasis is central to metabolism, providing recycling of carbon backbones and ammonia between cell types. Here, we examined the role of cerebellar amino acid transporters in the cycling of glutamine and alanine in guinea pig cerebellar slices by inhibiting amino acid transporters and examining the resultant metabolism of [1-13C]d-glucose and [1,2-13C]acetate by NMR spectroscopy and LCMS. While the lack of specific inhibitors of each transporter makes interpretation difficult, by viewing results from experiments with multiple inhibitors we can draw inferences about the major cell types and transporters involved. In cerebellum, glutamine and alanine transfer is dominated by system A, blockade of which has maximum effect on metabolism, with contributions from System N. Inhibition of neural system A isoform SNAT1 by MeAIB resulted in greatly decreased metabolite pools and reduced net fluxes but showed little effect on fluxes from [1,2-13C]acetate unlike inhibition of SNAT3 and other glutamine transporters by histidine where net fluxes from [1,2-13C]acetate are reduced by ~50%. We interpret the data as further evidence of not one but several glutamate/glutamine exchange pools. The impact of amino acid transport inhibition demonstrates that the cerebellum has tightly coupled cells and that glutamate/glutamine, as well as alanine cycling, play a major role in that part of the brain

    Energy conditions in f(R) gravity and Brans-Dicke theories

    Full text link
    The equivalence between f(R) gravity and scalar-tensor theories is invoked to study the null, strong, weak and dominant energy conditions in Brans-Dicke theory. We consider the validity of the energy conditions in Brans-Dicke theory by invoking the energy conditions derived from a generic f(R) theory. The parameters involved are shown to be consistent with an accelerated expanding universe.Comment: 9 pages, 1 figure, to appear in IJMP
    corecore