29 research outputs found

    Utility of Oral Swab Sampling for Ebola Virus Detection in Guinea Pig Model

    No full text
    To determine the utility of oral swabs for diagnosing infection with Ebola virus, we used a guinea pig model and obtained daily antemortem and postmortem swab samples. According to quantitative reverse transcription PCR analysis, the diagnostic value was poor for antemortem swab samples but excellent for postmortem samples

    Prothrombin Time, Activated Partial Thromboplastin Time, and Fibrinogen Reference Intervals for Inbred Strain 13/N Guinea Pigs (Cavia porcellus) and Validation of Low Volume Sample Analysis

    No full text
    Inbred strain 13/N guinea pigs are used as small animal models for the study of hemorrhagic fever viruses. Coagulation abnormalities, including prolonged clotting times and bleeding, are characteristic of hemorrhagic fever in humans; patients often meet criteria for disseminated intravascular coagulation (DIC). Comprehensively evaluating coagulation function is critical in model development and studies of viral pathogenesis and therapeutic efficacy. Here, using the VetScan VSpro veterinary point-of-care platform, we developed reference intervals in both juvenile and adult strain 13/N guinea pigs for three coagulation parameters: prothrombin time (PT), activated partial thromboplastin time (aPTT), and fibrinogen. In addition, for situations or species with limited availability of blood for clinical analysis, we investigated the validity of a modified collection approach for low-volume (0.1 mL) blood sample analysis of PT and aPTT

    Volume-Associated Clinical and Histopathological Effects of Intranasal Instillation in Syrian Hamsters: Considerations for Infection and Therapeutic Studies

    No full text
    Syrian hamsters are a key animal model of SARS-CoV-2 and other respiratory viruses and are useful for the evaluation of associated medical countermeasures. Delivery of an infectious agent or intervention to the respiratory tract mirrors natural routes of exposure and allows for the evaluation of clinically relevant therapeutic administration. The data to support instillation or inoculation volumes are important both for optimal experimental design and to minimize or avoid effects of diluent alone, which may compromise both data interpretation and animal welfare. Here we investigate four intranasal (IN) instillation volumes in hamsters (50, 100, 200, or 400 µL). The animals were monitored daily, and a subset were serially euthanized at one of four pre-determined time-points (1, 3, 7, and 14 days post-instillation). Weight, temperature, oxygen saturation, CBC, radiographs, and respiratory tissue histopathology were assessed to determine changes associated with instillation volume alone. With all the delivery volumes, we found no notable differences between instilled and non-instilled controls in all of the parameters assessed, except for histopathology. In the animals instilled with 200 or 400 µL, inflammation associated with foreign material was detected in the lower respiratory tract indicating that higher volumes may result in aspiration of nasal and/or oropharyngeal material in a subset of animals, resulting in IN instillation-associated histopathology

    Stable Occupancy of the Crimean-Congo Hemorrhagic Fever Virus-Encoded Deubiquitinase Blocks Viral Infection

    No full text
    Crimean-Congo hemorrhagic fever virus is an important human pathogen with a wide global distribution for which no therapeutic interventions are available. CCHFV encodes a cysteine protease belonging to the ovarian tumor (OTU) family which is involved in host immune suppression. Here we demonstrate that artificially prolonged binding of the OTU to a substrate inhibits virus infection. This provides novel insights into CCHFV OTU function during the viral replicative cycle and highlights the OTU as a potential antiviral target.Crimean-Congo hemorrhagic fever virus (CCHFV) infection can result in a severe hemorrhagic syndrome for which there are no antiviral interventions available to date. Certain RNA viruses, such as CCHFV, encode cysteine proteases of the ovarian tumor (OTU) family that antagonize interferon (IFN) production by deconjugating ubiquitin (Ub). The OTU of CCHFV, a negative-strand RNA virus, is dispensable for replication of the viral genome, despite being part of the large viral RNA polymerase. Here, we show that mutations that prevent binding of the OTU to cellular ubiquitin are required for the generation of recombinant CCHFV containing a mutated catalytic cysteine. Similarly, the high-affinity binding of a synthetic ubiquitin variant (UbV-CC4) to CCHFV OTU strongly inhibits viral growth. UbV-CC4 inhibits CCHFV infection even in the absence of intact IFN signaling, suggesting that its antiviral activity is not due to blocking the OTU’s immunosuppressive function. Instead, the prolonged occupancy of the OTU with UbV-CC4 directly targets viral replication by interfering with CCHFV RNA synthesis. Together, our data provide mechanistic details supporting the development of antivirals targeting viral OTUs

    Asymptomatic Infection of Marburg Virus Reservoir Bats Is Explained by a Strategy of Immunoprotective Disease Tolerance

    Get PDF
    Marburg virus (MARV) is among the most virulent pathogens of primates, including humans. Contributors to severe MARV disease include immune response suppression and inflammatory gene dysregulation (“cytokine storm”), leading to systemic damage and often death. Conversely, MARV causes little to no clinical disease in its reservoir host, the Egyptian rousette bat (ERB). Previous genomic and in vitro data suggest that a tolerant ERB immune response may underlie MARV avirulence, but no significant examination of this response in vivo yet exists. Here, using colony-bred ERBs inoculated with a bat isolate of MARV, we use species-specific antibodies and an immune gene probe array (NanoString) to temporally characterize the transcriptional host response at sites of MARV replication relevant to primate pathogenesis and immunity, including CD14+ monocytes/macrophages, critical immune response mediators, primary MARV targets, and skin at the inoculation site, where highest viral loads and initial engagement of antiviral defenses are expected. Our analysis shows that ERBs upregulate canonical antiviral genes typical of mammalian systems, such as ISG15, IFIT1, and OAS3, yet demonstrate a remarkable lack of significant induction of proinflammatory genes classically implicated in primate filoviral pathogenesis, including CCL8, FAS, and IL6. Together, these findings offer the first in vivo functional evidence for disease tolerance as an immunological mechanism by which the bat reservoir asymptomatically hosts MARV. More broadly, these data highlight factors determining disparate outcomes between reservoir and spillover hosts and defensive strategies likely utilized by bat hosts of other emerging pathogens, knowledge that may guide development of effective antiviral therapies.Peer Reviewe

    The S Genome Segment Is Sufficient to Maintain Pathogenicity in Intra-Clade Lassa Virus Reassortants in a Guinea Pig Model

    No full text
    Genome reassortment in Lassa virus (LASV) has been reported in nature, but phenotypic consequences of this phenomenon are not well described. Here we characterize, both in vitro and in vivo, reassortment between 2 LASV strains: the prototypic 1976 Josiah strain and a more recently isolated 2015 Liberian strain. In vitro analysis showed that although cis- and trans-acting elements of viral RNA synthesis were compatible between strains, reassortants demonstrated different levels of viral replication. These differences were also apparent in vivo, as reassortants varied in pathogenicity in the guinea pig model of LASV infection. The reassortant variant containing the Josiah S segment retained the virulence of the parental Josiah strain, but the reassortant variant containing the S segment of the Liberian isolate was highly attenuated compared to both parental strains. Contrary to observations in reassortants between LASV and other arenavirus species, which suggest that L segment-encoded factors are responsible for virulence, these studies highlight a role for S segment-encoded virulence factors in disease, and also suggest that inefficient interactions between proteins of heterologous strains may limit the prevalence of reassortant LASV variants in nature

    Clinical, Histopathologic, and Immunohistochemical Characterization of Experimental Marburg Virus Infection in A Natural Reservoir Host, the Egyptian Rousette Bat (Rousettus aegyptiacus)

    No full text
    Egyptian rousette bats (Rousettus aegyptiacus) are natural reservoir hosts of Marburg virus (MARV), and Ravn virus (RAVV; collectively called marburgviruses) and have been linked to human cases of Marburg virus disease (MVD). We investigated the clinical and pathologic effects of experimental MARV infection in Egyptian rousettes through a serial euthanasia study and found clear evidence of mild but transient disease. Three groups of nine, captive-born, juvenile male bats were inoculated subcutaneously with 10,000 TCID50 of Marburg virus strain Uganda 371Bat2007, a minimally passaged virus originally isolated from a wild Egyptian rousette. Control bats (n = 3) were mock-inoculated. Three animals per day were euthanized at 3, 5–10, 12 and 28 days post-inoculation (DPI); controls were euthanized at 28 DPI. Blood chemistry analyses showed a mild, statistically significant elevation in alanine aminotransferase (ALT) at 3, 6 and 7 DPI. Lymphocyte and monocyte counts were mildly elevated in inoculated bats after 9 DPI. Liver histology revealed small foci of inflammatory infiltrate in infected bats, similar to lesions previously described in wild, naturally-infected bats. Liver lesion severity scores peaked at 7 DPI, and were correlated with both ALT and hepatic viral RNA levels. Immunohistochemical staining detected infrequent viral antigen in liver (3–8 DPI, n = 8), spleen (3–7 DPI, n = 8), skin (inoculation site; 3–12 DPI, n = 20), lymph nodes (3–10 DPI, n = 6), and oral submucosa (8–9 DPI, n = 2). Viral antigen was present in histiocytes, hepatocytes and mesenchymal cells, and in the liver, antigen staining co-localized with inflammatory foci. These results show the first clear evidence of very mild disease caused by a filovirus in a reservoir bat host and provide support for our experimental model of this virus-reservoir host system

    Human immune cell engraftment does not alter development of severe acute Rift Valley fever in mice

    No full text
    <div><p>Rift Valley fever (RVF) in humans is usually mild, but, in a subset of cases, can progress to severe hepatic and neurological disease. Rodent models of RVF generally develop acute severe clinical disease. Here, we inoculated humanized NSG-SGM3 mice with Rift Valley fever virus (RVFV) to investigate whether the presence of human immune cells in mice would alter the progression of RVFV infection to more closely model human disease. Despite increased human cytokine expression, including responses mirroring those seen in human disease, and decreased hepatic viral RNA levels at terminal euthanasia, both high- and low-dose RVFV inoculation resulted in lethal disease in all mice with comparable time-to-death as unengrafted mice.</p></div

    Human and mouse cytokine expression in RVFV-inoculated humanized mice.

    No full text
    <p>Background control NSGS mice or Hu-NSG-SGM3 mice at 13 or 19 wk post engraftment were inoculated intramuscularly with 10<sup>4</sup> TCID<sub>50</sub> (Hi) or 10<sup>1</sup> TCID<sub>50</sub> (Lo) of RVFV; samples were collected at terminal euthanasia (3 DPI for Lo; 2 DPI for Hi). Human (A) and mouse (B) cytokine expression in plasma of Hu-NSG-SGM3 determined by multiplex bead-based assays (mean ± SD). Illustrated is a subset of analytes that, in general, demonstrated the most pronounced increases in expression; complete human 25-plex and mouse 26-plex array data are available in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0201104#pone.0201104.s001" target="_blank">S1 Table</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0201104#pone.0201104.s002" target="_blank">S2 Table</a>, respectively. In addition to samples not obtained due to acute terminal disease, samples excluded due to insufficient volume from human cytokine analysis include Hi-13-wk-2 (ID 5083–08) and Hi-NSGS-2, and from mouse cytokine analysis Lo-13-wk-4 (5084–20), and Hi-13-wk-2 (ID 5083–08). Historical samples from mock-inoculated (control, open circles) Hu-NSG-SGM3 mice were used to determine baseline expression in both panels. Shading indicates areas outside of the dynamic range of the assay, as determined by the standard curve run in conjunction with samples.</p
    corecore