1,296 research outputs found

    Kondo lattice model: Unitary transformations, spin dynamics, strongly correlated charged modes, and vacuum instability

    Full text link
    Using unitary transformations, we express the Kondo lattice Hamiltonian in terms of fermionic operators that annihilate the ground state of the interacting system and that represent the best possible approximations to the actual charged excitations. In this way, we obtain an effective Hamiltonian which, for small couplings, consists in a kinetic term for conduction electrons and holes, an RKKY-like term, and a renormalized Kondo interaction. The physical picture of the system implied by this formalism is that of a vacuum state consisting in a background of RKKY-induced spin correlations, where two kinds of elementary modes can be excited: Soft neutral modes associated with deformations of the spin liquid, which lead to very large low-temperature values of the heat capacity and magnetic susceptibility, and charged modes corresponding to the excitation of electrons and holes in the system. Using the translational and spin rotational symmetries, we construct a simple ansatz to determine the charged excitations neglecting the effects of the spin correlations. Apart from the `normal', uncorrelated states, we find strongly correlated charged modes involving soft electrons (or holes) and spin fluctuations, which strongly renormalize the low-energy charged spectrum, and whose energy becomes negative beyond a critical coupling, signaling a vacuum instability and a transition to a new phase.Comment: 35 pages, revtex 3.

    The Effective Potential of the N=0* Yang-Mills Theory

    Full text link
    We study the \N=4 SYM theory with SU(N) gauge group in the large N limit, deformed by giving equal mass to the four adjoint fermions. With this modification, a potential is dynamically generated for the six scalars in the theory, \phi^i. We show that the resulting theory is stable (perturbatively in the 't Hooft coupling), and that there are some indications that =0 is the vacuum of the theory. Using the AdS/CFT correspondence, we compare the results to the corresponding supergravity computation, i.e. brane probing a deformed AdS_5 x S^5 background, and we find qualitative agreement.Comment: 12 pages, 2 figures, version to appear in JHE

    Testing Lorentz invariance violations in the tritium beta-decay anomaly

    Get PDF
    We consider a Lorentz non-invariant dispersion relation for the neutrino, which would produce unexpected effects with neutrinos of few eV, exactly where the tritium beta-decay anomaly is found. We use this anomaly to put bounds on the violation of Lorentz invariance. We discuss other consequences of this non-invariant dispersion relation in neutrino experiments and high-energy cosmic-ray physics.Comment: 11 pages, 2 figures, elsart style. Some references added. Final version to appear in Physics Letters

    Chern-Simons like term generation in an extended model of QED under external conditions

    Full text link
    The possibility of a Chern-Simons like term generation in an extended model of QED, in which a Lorentz and CPT non-covariant interaction term for fermions is present, has been investigated at finite temperature and in the presence of a background color magnetic field. To this end, the photon polarization operator in an external constant axial-vector field has been considered. One-loop contributions to its antisymmetric component due to fermions in the linear order of the axial-vector field have been obtained. Moreover, the first nontrivial correction to the induced CS term due to the presence of a weak constant homogeneous color magnetic field has been derived.Comment: RevTex, 10 pages with 3 figure

    Fermions on the Electroweak String

    Full text link
    We construct a simple class of exact solutions of the electroweak theory including the naked ZZ--string and fermion fields. It consists in the ZZ--string configuration (ϕ,Zθ\phi,Z_\theta), the {\it time} and zz components of the neutral gauge bosons (Z0,3,A0,3Z_{0,3},A_{0,3}) and a fermion condensate (lepton or quark) zero mode. The ZZ--string is not altered (no feed back from the rest of fields on the ZZ--string) while fermion condensates are zero modes of the Dirac equation in the presence of the ZZ--string background (no feed back from the {\it time} and zz components of the neutral gauge bosons on the fermion fields). For the case of the nn--vortex ZZ--string the number of zero modes found for charged leptons and quarks is (according to previous results by Jackiw and Rossi) equal to n|n|, while for (massless) neutrinos is n1|n|-1. The presence of fermion fields in its core make the obtained configuration a superconducting string, but their presence (as well as that of Z0,3,A0,3Z_{0,3},A_{0,3}) does not enhance the stability of the ZZ--string.Comment: 12 text pages (Latex) and 8 postscript figures in a uuencoded fil

    Failure of Gauge Invariance in the Nonperturbative Formulation of Massless Lorentz-Violating QED

    Full text link
    We consider a Lorentz-violating modification to the fermionic Lagrangian of QED that is known to produce a finite Chern-Simons term at leading order. We compute the second order correction to the one-loop photon self-energy in the massless case using an exact propagator and a nonperturbative formulation of the theory. This nonperturbative theory assigns a definite value to the coefficient of the induced Chern-Simons term; however, we find that the theory fails to preserve gauge invariance at higher orders. We conclude that the specific nonperturbative value of the Chern-Simons coefficient has no special significance.Comment: 8 pages, very minor change

    Renormalized Wick expansion for a modified PQCD

    Full text link
    The renormalization scheme for the Wick expansion of a modified version of the perturbative QCD introduced in previous works is discussed. Massless QCD is considered, by implementing the usual multiplicative scaling of the gluon and quark wave functions and vertices. However, also massive quark and gluon counter-terms are allowed in this mass less theory since the condensates are expected to generate masses. A natural set of expansion parameters of the physical quantities is introduced: the coupling itself and to masses mqm_q and mgm_g associated to quarks and gluons respectively. This procedure allows to implement a dimensional transmutation effect through these new mass scales. A general expression for the new generating functional in terms of the mass parameters mqm_q and mgm_g is obtained in terms of integrals over arbitrary but constant gluon or quark fields in each case. Further, the one loop potential, is evaluated in more detail in the case when only the quark condensate is retained. This lowest order result again indicates the dynamical generation of quark condensates in the vacuum.Comment: 13 pages, one figur

    Bosonization of the Low Energy Excitations of Fermi Liquids

    Full text link
    We bosonize the low energy excitations of Fermi Liquids in any number of dimensions in the limit of long wavelengths. The bosons are coherent superposition of electron-hole pairs and are related with the displacement of the Fermi Surface in some arbitrary direction. A coherent-state path integral for the bosonized theory is derived and it is shown to represent histories of the shape of the Fermi Surface. The Landau equation for the sound waves is shown to be exact in the semiclassical approximation for the bosons.Comment: 10 pages, RevteX, P-93-03-027 (UIUC

    Long-lived oscillons from asymmetric bubbles

    Get PDF
    The possibility that extremely long-lived, time-dependent, and localized field configurations (``oscillons'') arise during the collapse of asymmetrical bubbles in 2+1 dimensional phi^4 models is investigated. It is found that oscillons can develop from a large spectrum of elliptically deformed bubbles. Moreover, we provide numerical evidence that such oscillons are: a) circularly symmetric; and b) linearly stable against small arbitrary radial and angular perturbations. The latter is based on a dynamical approach designed to investigate the stability of nonintegrable time-dependent configurations that is capable of probing slowly-growing instabilities not seen through the usual ``spectral'' method.Comment: RevTeX 4, 9 pages, 11 figures. Revised version with a new approach to stability. Accepted to Phys. Rev.
    corecore