23,429 research outputs found

    On induced birefringence in viscoelastic materials

    Get PDF
    Describing induced birefringence in viscoelastic materials based on constitutive assumptions for stress and dielectric propertie

    Radiographic measurements of the trachea in domestic short haired and Persian cats

    Get PDF
    Tracheal diameter can be assessed from a thoracic radiograph, with assessment of tracheal diameter in dogs based on ratios between tracheal diameter and a skeletal measurement – however reference ranges are not available for the cat. Tracheal narrowing may cause significant clinical problems, although tracheal hypoplasia in dogs may be clinically silent, and is rarely reported in cats (both mesati- and brachycephalic). The tracheal diameter and trachea:thoracic inlet and trachea:rib ratios were calculated for populations of Domestic Short Haired (DSH) (n=68) and Persian (n=40) cats. This gave reference ranges for radiographic tracheal measurements in these breeds. It is proposed that the tracheal diameter in a normal DSH cat should be 18% of the diameter of the thoracic inlet, and compared to 20% in Persian cats

    Quantum Fermion Hair

    Full text link
    It is shown that the Dirac operator in the background of a magnetic %Reissner-Nordstr\"om black hole and a Euclidean vortex possesses normalizable zero modes in theories containing superconducting cosmic strings. One consequence of these zero modes is the presence of a fermion condensate around magnetically charged black holes which violates global quantum numbers.Comment: 16pp (harvmac (l)) and 2 figs.(not included

    Reentrant violation of special relativity in the low-energy corner

    Get PDF
    In the effective relativistic quantum field theories the energy region, where the special relativity holds, can be sandwiched from both the high and low energies sides by domains where the special relativity is violated. An example is provided by 3He-A where the relativistic quantum field theory emerges as the effective theory. The reentrant violation of the special relativity in the ultralow energy corner is accompanied by the redistribution of the momentum-space topological charges between the fermionic flavors. At this ultralow energy an exotic massless fermion with the topological charge N3=2N_3=2 arises, whose energy spectrum mixes the classical and relativistic behavior. This effect can lead to neutrino oscillations if neutrino flavors are still massless at this energy scale.Comment: RevTeX file, 5 pages, one figure, submitted to JETP Let

    Minority Becomes Majority in Social Networks

    Full text link
    It is often observed that agents tend to imitate the behavior of their neighbors in a social network. This imitating behavior might lead to the strategic decision of adopting a public behavior that differs from what the agent believes is the right one and this can subvert the behavior of the population as a whole. In this paper, we consider the case in which agents express preferences over two alternatives and model social pressure with the majority dynamics: at each step an agent is selected and its preference is replaced by the majority of the preferences of her neighbors. In case of a tie, the agent does not change her current preference. A profile of the agents' preferences is stable if the preference of each agent coincides with the preference of at least half of the neighbors (thus, the system is in equilibrium). We ask whether there are network topologies that are robust to social pressure. That is, we ask if there are graphs in which the majority of preferences in an initial profile always coincides with the majority of the preference in all stable profiles reachable from that profile. We completely characterize the graphs with this robustness property by showing that this is possible only if the graph has no edge or is a clique or very close to a clique. In other words, except for this handful of graphs, every graph admits at least one initial profile of preferences in which the majority dynamics can subvert the initial majority. We also show that deciding whether a graph admits a minority that becomes majority is NP-hard when the minority size is at most 1/4-th of the social network size.Comment: To appear in WINE 201

    What can we learn from Dijet suppression at RHIC?

    Full text link
    We present a systematic study of the dijet suppression at RHIC using the VNI/BMS parton cascade. We examine the modification of the dijet asymmetry A_j and the within-cone transverse energy distribution (jet-shape) along with partonic fragmentation distributions z and j_t in terms of: qhat; the path length of leading and sub-leading jets; cuts on the jet energy distributions; jet cone angle and the jet-medium interaction mechanism. We find that A_j is most sensitive to qhat and relatively insensitive to the nature of the jet-medium interaction mechanism. The jet profile is dominated by qhat and the nature of the interaction mechanism. The partonic fragmentation distributions clearly show the jet modification and differentiate between elastic and radiative+elastic modes

    High Temperature Superfluid and Feshbach Resonance

    Full text link
    We study an effective field theory describing cold fermionic atoms near a Feshbach resonance. The theory gives a unique description of the dynamics in the limit that the energy of the Feshbach resonance is tuned to be twice that of the Fermi surface. We show that in this limit the zero temperature superfluid condensate is of order the Fermi energy, and obtain a critical temperature TC0.43TFT_C \simeq 0.43 T_FComment: 9 pages, 3 figures, RevTe

    Large NcN_c QCD at non-zero chemical potential

    Full text link
    The general issue of large NcN_c QCD at nonzero chemical potential is considered with a focus on understanding the difference between large NcN_c QCD with an isospin chemical potential and large NcN_c QCD with a baryon chemical potential. A simple diagrammatic analysis analogous to `t Hooft's analysis at μ=0\mu=0 implies that the free energy with a given baryon chemical potential is equal to the free energy with an isospin chemical potential of the same value plus 1/Nc1/N_c corrections. Phenomenologically, these two systems behave quite differently. A scenario to explain this difference in light of the diagrammatic analysis is explored. This scenario is based on a phase transition associated with pion condensation when the isospin chemical potential exceeds mπ/2m_\pi/2; associated with this transition there is breakdown of the 1/Nc1/N_c expansion--in the pion condensed phase there is a distinct 1/Nc1/N_c expansion including a larger set of diagrams. While this scenario is natural, there are a number of theoretical issues which at least superficially challenge it. Most of these can be accommodated. However, the behavior of quenched QCD which raises a number of apparently analogous issues cannot be easily understood completely in terms of an analogous scenario. Thus, the overall issue remains open
    corecore