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Executive Summary 
 

The need to reduce atmospheric emissions of carbon dioxide (CO2) from industrial 

sources is now recognized internationally. As a result, companies operating coal-fired and other 

types of power plants in the southeastern U.S. (SE US) have been seeking information on the 

potential for long-term storage of CO2 in nearby subsurface geologic formations. Previous 

studies have shown there to be little to no capacity for onshore subsurface storage of CO2 in 

deep saline reservoirs in the Carolinas and northern Georgia (GA) (Smyth et al., 2008). However 

prior to this study, southern GA had not been assessed for geologic sequestration (GS) capacity 

potential. It is currently not known if extensive petroleum reserves exist below the continental 

shelf of the Atlantic Ocean offshore from SE US but, potential offshore capacity for storage of 

CO2 is large.  

The objectives of this study have been to (1) assess the potential for GS of CO2 in areas 

of SE US not previously characterized (i.e. southern GA coastal plain between the panhandle of 

Florida (FL) and the Atlantic Ocean) and (2) refine capacity estimates for portions of offshore 

geologic units present below the nearby Atlantic continental shelf. We primarily focused on 

geographic areas where CO2 can be stored in deep saline reservoirs at depths great enough to 

keep it in supercritical phase, but also had to consider surrounding areas in order to better solve 

the geological puzzle. Maintaining CO2 in supercritical phase requires temperature greater than 

31.1 °C (88 °F) and pressure greater than 7.39 MPa (72.9 atm), which corresponds to depth 

below ground surface of ~800 m (2600 ft). Results of this detailed study of the regional 

subsurface geologic units are timely for operators of coal-fired power plants in the SE US 

because technologies to separate, capture, and concentrate CO2 from industrial emissions are 

ready for commercial-scale demonstration. 

Two areas with thick accumulations of coastal plain sediment underlie the southwest and 

southeast GA embayments. It is in thicker sections of the embayments, both onshore and 

offshore, that nonmarine, clastic (i.e., gravel-, sand-, and silt-bearing) strata have the highest 

potential for deep geologic storage of CO2 generated in the SE US.  

To battle the complexity of Georgia’s deep subsurface geology, Carr used the concepts of 

sequence stratigraphy to define the large-scale distribution of two potential CO2 geologic 

sequestration units (GSUs). The sequence stratigraphic method focuses on tracing correlative 

time surfaces in cross sections that are made up of individual well logs and/or descriptions of 

rock core collected from wellbores. The advantage of the sequence stratigraphic method is that 

applied correctly, it captures architecture of rock units more accurately and at scales that affect 

subsurface fluid flow. After many iterations of correlation and cross section construction, Carr 

identified the following major stratigraphic packages within our area of interest: 

1. Pre-Tuscaloosa sandstones/conglomerates of upper Jurassic (?) to Early 

Cretaceous age 

2. Tuscaloosa (or equivalents) sandstones of early Late Cretaceous-age  

3. Post- Tuscaloosa sandstones and limestones of Late Cretaceous age 

The two intervals with sufficient thicknesses of net permeable clastic strata, at depths deep 

enough to store CO2 in supercritical phase, are Pre-Tuscaloosa and Tuscaloosa (fig. 1). 

Estimates for the capacity of subsurface geologic units to store CO2 depend on, among 

other variables, the thickness of permeable sand present in a reservoir. We estimated CO2 

storage capacity of the two GSUs by (1) establishing geologic framework and determining 

porosity in Petra geologic modeling software (2) exporting data to ArcGIS, and (3) using the 
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methodology developed primarily by researchers at the Massachusetts Institute of Technology 

(MIT, 2010) and reported in the U.S. Department of Energy, National Energy Technology 

Laboratory National Carbon Sequestration Atlas (NETL, 2010) for saline reservoir capacity 

The total capacity for the Pre-Tuscaloosa GSU, using an efficiency factor (E) of 2 

percent, is ~111 Gt over an area of ~74,000 mi
2
 (191,000 km

2
). The total capacity for GS of CO2 

in the Tuscaloosa GSU, using E = 2 percent, is ~31 Gt over an area of ~65,000 mi
2
 (168,000 

km
2
). Areas with higher capacity are in offshore portions of the SW and SE GA embayments, 

which is where the thickest accumulations of permeable sands and highest estimated porosities 

lie.  

 

 

Introduction 
 

The need to reduce atmospheric emissions of carbon dioxide (CO2) from industrial 

sources, especially coal-fired power plants, is now recognized internationally. As a result, 

companies operating coal-fired and other types of power plants in the southeastern United States 

(SE US) have been seeking information on the potential for long-term storage of CO2 in nearby 

subsurface geologic formations. Deep subsurface geologic storage (GS) of CO2 will take place 

in two types of settings (1) oilfields undergoing enhanced oil recovery (EOR) using CO2 and (2) 

saline reservoirs in which CO2 will be stored, albeit without the added benefit of revenues from 

increased oil production. In both types of settings, CO2 will be injected into geologic units that 

are deeper than, and isolated from, underground sources of drinking water.  

Previous workers (primarily the Georgia and United States geological surveys) have 

documented that the onshore areas of interest in this study lack petroleum reserves, hence there 

are no potential EOR fields. Previous studies have also shown there to be little to no capacity for 

onshore subsurface storage of CO2 in deep saline reservoirs in the Carolinas and northern GA 

(figure 1). However prior to this study, southern GA had not been assessed for GS capacity 

potential. It is currently not known if extensive petroleum reserves exist below the continental 

shelf of the Atlantic Ocean offshore from SE US but, potential offshore capacity for storage of 

CO2 is large. 
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Figure 1. Potential CO2 geologic sequestration areas along coastal plains of the southeastern U.S. 

 

An advantage of siting CO2 storage operations in oil producing areas is that there is 

much information on the subsurface geologic formations into which CO2 can be injected. 

However a risk associated with oilfield injection of CO2 is the economic disadvantage of having 

to plug abandoned or damaged wells to keep the CO2 from escaping back up to the surface and 

into the atmosphere. One advantage of siting CO2 storage operations in offshore settings is that 

the risk of impacting overlying drinking water resources is removed. For much of the SE US 

where onshore capacity to store CO2 in geologic strata is limited, the best options may be 

offshore. Reasons for this are large GS storage capacity in strata thousands of feet below the 

seafloor, and the absence of wells drilled through seals (i.e. low permeability geologic strata) that 

would impede migration of CO2 from deep injection zones up to the seafloor. 

Previous studies of capacity for storage of CO2 in the SE US were conducted on a 

reconnaissance level and relied primarily on previously published work for information. Results 

of this detailed study of the regional subsurface geologic units are timely for operators of coal-

fired power plants in the SE US because technologies to separate, capture, and concentrate CO2 

from industrial emissions are ready for commercial-scale demonstration. 

In a previous “Carolinas report”, Smyth et al. (2008) identified areas (e.g., 2008 areas on 

fig. 1) potentially suitable for long term GS of up to 250 gigatons (Gt) of CO2 in the SE US 

onshore and offshore Atlantic deep subsurface. This study was funded by companies operating 

power plants in the SE US: Duke Energy, Progress Energy, Santee Cooper Power, and South 

Carolina Electric and Gas, in cooperation with the Electric Power Research Institute (EPRI) and 

the Southern States Energy Board (SSEB).  
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The 2008 Carolinas study updated and superseded previous CO2 source-sink matching 

studies (Hovorka et al., 2000, 2003) of the SE US (e.g., 2003 area on fig. 1). This Southeast 

Regional Carbon Sequestration Partnership (SECARB) Phase I reconnaissance-level capacity-

estimation study was funded by the Department of Energy (DOE) National Energy Technology 

Laboratory (NETL) and administered by SSEB. 

In the current study: Continued Evaluation of Potential for Geologic Storage of Carbon 

Dioxide in the Southeastern United States, Gulf Coast Carbon Center (GCCC) personnel at the 

Bureau of Economic Geology (BEG), Jackson School of Geosciences (JSG), The University of 

Texas at Austin (Carr and Coleman), with assistance from SSEB, assembled a geologic database 

of borehole geophysical logs (logs) and depth picks for geological stratal markers. Carr then 

correlated geologic strata and identified nonmarine, clastic (i.e., gravel-, sand-, and silt-bearing) 

units suitable for CO2 subsurface storage (2011 areas on fig. 1). The stratigraphic correlations 

have been more difficult than similar past and current studies conducted in the central and 

western Gulf of Mexico because of relative paucity of detailed geological data and complexities 

associated with plate tectonic history of the region.  

The objectives of this study have been to (1) assess the potential for GS of CO2 in areas 

of SE US not previously characterized (i.e. southern Georgia (GA) coastal plain between the 

panhandle of Florida (FL) and the Atlantic Ocean) and (2) refine capacity estimates for portions 

of offshore geologic units present below the nearby Atlantic continental shelf. To accomplish 

these objectives we concentrated on an area within the Gulf of Mexico and Atlantic coastal 

plains of southeastern Alabama, northern FL, and southern GA, and below the continental shelf 

of the Atlantic Ocean offshore from northern FL, GA, and southern South Carolina (SC). We 

primarily focused on geographic areas where CO2 can be stored in deep saline reservoirs at 

depths great enough to keep it in supercritical phase, but also had to consider surrounding areas 

in order to better solve the geological puzzle.  

 

 

Regional Geologic Setting and Geologic History 
 

Assembly of a geologic model, through correlation of stratigraphic units in the 

onshore/offshore subsurface of the southeastern U.S., has been complicated by movement of 

tectonic plates over geologic time (see Appendix I - Geologic Time Scale). The breakup and 

reassembly of continental masses and seafloor spreading have resulted in fragments of earth’s 

crust (igneous, sedimentary, and metamorphic rocks) being attached to different continents at 

different times in the past. Relevant periods of plate tectonic history of our region of interest are 

shown in fig. 2. These images of global distribution of continents are from the PLATES project 

at The University of Texas at Austin Institute of Geophysics (UTIG) (Dalziel, 1995, 1997, 2000; 

Dalziel et al., 2000; and UTIG, 2011). Here we show three examples of many available 

reconstructions of earth’s continents over a 750 million year (Ma) timespan. The geologic time 

periods represented in fig. 2 are 320 Ma (early Pennsylvanian), 180 Ma (middle Jurassic), and 

100 Ma (middle Cretaceous). 

In early Pennsylvanian time much of the study area was positioned between the 

northeastern continental U.S. and northwestern Africa (orange area with Floridian peninsula in 

fig. 2a). More recently (middle Jurassic time) the region became attached to the North American 

continent in its current configuration, with northern Africa attached to the northeast (fig. 2b). 

This large mass of continents is referred to as the super continent, Pangaea. The present day 
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Appalachian Mountains were uplifted during continental collisions that formed Pangaea. Rocks 

of the ancestral Appalachian Mountains terminate abruptly in GA because this was the southern 

edge of the North American continent at that time (e.g., Nelson et al., 1989). 

By early Mesozoic (Triassic to early Jurassic time), seafloor spreading (black lines in fig. 

2c) in the mid-Atlantic was underway; during this time the North American continent was 

moving westward away from Africa and South America (a continental mass called Gondwana) 

and the Gulf of Mexico was opening up. Breakup of Pangaea also resulted in formation of rift 

basins (tears in the continental crust) concentrated in areas of crustal weakness resulting from 

previous continental collision (i.e., FL, southern GA, and parts of SC becoming part of the North 

American continent). The yellow-shaded area on fig. 3 is a zone of early Mesozoic rift basins 

that trend northeast-southwest across southern AL/southern GA/northern FL/southern SC, and 

extend underneath the Atlantic seafloor. 

Also shown in figure 3 is a feature called the Fall Line. This is an erosional boundary 

separating the Piedmont physiographic province of the Appalachian Mountains from the coastal 

plain. Fractured crystalline metamorphic rocks like those exposed in the Piedmont underlie 

landward portions of the GA coastal plain (e.g., Dillon et al., 1979). As concluded in Smyth et al. 

(2008), rocks of the Piedmont province and western portions of the coastal plain are not suitable 

for GS of CO2. The coastal plain sedimentary strata of Cretaceous and Tertiary age begin at the 

Fall Line and thicken seaward to, and beyond, the present-day continental shelf edge located 

approximately 80 miles offshore. 
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Figure 2. Plate tectonic reconstructions for (a) Pennsylvanian (320 Ma), (b) Middle Jurassic (180 Ma), 

and (c) Early Cretaceous (100 Ma) geologic time periods. 

a 

b 
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Two areas with thick accumulations of clastic sediment lie on the eastern and western 

ends of the early Mesozoic age rift zone that is buried beneath coastal plain sediments (Marine 

and Simple, 1974). The sedimentary basin on the western side has been given various names by 

multiple authors: southwest Georgia embayment, Tallahassee graben, and Apalachicola 

embayment; the basin on the east has primarily been referred to as the southeast Georgia 

embayment, but has also been called the Okeefenokee embayment and the Savannah basin. In 

this report we refer to these basins as the southwest and southeast Georgia embayments. Axes 

along the thickest portions of these embayments are shown as black lines with converging arrows 

(fig. 3). Sediment filling the basins came from the Appalachian Mountains to the north and 

northwest (e.g., Applin and Applin, 1944; King, 1959; McBride et al., 1989) and “southern 

highlands” (Chowns and Williams. 1983). According to Maher and Applin (1971); Popenoe and 

Zietz (1977), Nelson et al. (1985), the GA embayments are situated over early Mesozoic rift 

basins so they received a greater thickness of sediment than intervening areas that were 

topographically higher at the time.  

 

 
 

Figure 3. Regional geologic and physiographic setting. Structural features shown include (1) Appalachian 

Mountain provinces: Appalachian Plateau, Valley and Ridge, Blue Ridge, and Piedmont, (2) Early 

Mesozoic period rift basin in yellow stripes, (2) Central Georgia Uplift/Pennisular Arch in Florida (black 

line with diverging arrows); (3) Southwest and Southeast Georgia embayments (black lines with 

converging arrows), and (4) Suwannee saddle (outlined in red). Map features modified from: Fenneman 

and Johnson (1946); Klitgord and Behrendt (1979); Frazier and Schwimmer (1987)Olsen et al. (1991); 

Hutchinson et al. (1997); and constructed during this study. Digital elevation models from NOAA (2006) 

(land) and Scripps (2006) (ocean floor). 
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The thickest accumulations of sediment in the embayments, as defined by the black axes 

in this study, do not exactly correspond with published locations of the rift basins (fig. 3). 

Reasons for this difference are discussed further in the results sections below. The embayments 

are not continuous across southern GA because a structural high, the central Georgia uplift in GA 

and the Pennisular Arch in FL lies between them (e.g., Frazier and Schwimmer, 1987). The axis 

of this uplifted area is shown as a black line with diverging arrows (fig. 3). This region has been 

elevated relative to the embayments since at least early Mesozoic as can be deduced from the 

basement structure map (fig. 4), and probably arose during early Mesozoic rifting as suggested 

by Smith (1982).  

The updip limits of the GA embayments and the FL-GA arch are centered on a 

structural/stratigraphic feature called the Suwannee saddle (named by Applin and Applin, 1965; 

red lines in fig. 3; called Suwannee strait by others). This feature, which lies on the northern edge 

of the Suwannee basin of northern FL (as defined by Smith, 1982), is coincident with the late 

Paleozoic suture zone between North America and Africa (Chowns and Williams, 1983, fig. 12). 

To call the Suwannee basin a basin is confusing if you are only looking at surfaces of Mesozoic 

and younger rocks (figs. 4, 11, 12, 15), especially since the FL peninsular arch runs almost 

through the middle of it (Smith, 1982). But rocks of the Suwannee basin are composed of older, 

early Paleozoic age, flat-lying sedimentary strata that were deposited in deep water along a 

continental margin (i.e. a basin) located south of the present day Suwannee saddle (fig.3). These 

Paleozoic strata and underlying high-silica igneous rocks are more similar to Africa than they are 

to North America (e.g., Applin, 1951; Barnet, 1975, Smith, 1982); hence they have no 

correlative units to the north.  

More recent Mesozoic strata that overlie rocks of the Suwannee basin are too shallow to 

serve as potential GSUs. In addition, after early Cretaceous time carbonate sedimentation 

dominated the southern high (Pennisular Arch) whereas primarily terrigenous clastic units were 

deposited to the north. By upper Cretaceous time the Atlantic shoreline was at least as far west as 

the Fall Line (fig. 3, Frazier and Schwimmer, 1987); hence most rocks of this age are carbonates 

(Applin and Applin, 1944; Buffler et al., 1979). It is in thicker parts of the lower Cretaceous and 

older strata that the highest potential for GS of CO2 generated in SE US exists, both onshore and 

offshore. 

 

 

Methodology 
 

To battle the complexity of Georgia’s deep subsurface geology, Carr used the concepts of 

sequence stratigraphy to define the large-scale distribution of potential CO2 geologic 

sequestration units (GSUs). The sequence stratigraphic method focuses on tracing correlative 

time surfaces in cross sections that are made up of individual well logs and/or descriptions of 

rock core collected from wellbores (e.g. data point locations on fig. 4). This approach is different 

from more traditional methods of mapping geologic strata, which typically transgress time. The 

advantage of the sequence stratigraphic method is that applied correctly, it frequently captures 

architecture of rock units more accurately and at scales that affect subsurface fluid flow. 

Note that the map areas outside those covered by the cross sections (fig. 4) are populated 

with data from published maps and geologic picks of stratal surfaces (i.e. tops and bottoms of 

regionally recognized geologic units). For example, in offshore areas where there are long 

distances between data points, we used a published map of depth to basement (Klitgord and 
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Behrendt, 1979) to aid construction of our basement map, which covers both offshore and 

onshore regions. We then used our basement map to aid stratigraphic correlation of units in areas 

without geophysical logs. 

Stratigraphic correlations were accomplished through construction of seven regional 

cross sections, A-A’ through G-G’ (fig. 4). The method was to correlated key stratigraphic 

surfaces defining major reservoir packages, and then correlated additional wells using the nearest 

cross section wells as type logs. By constructing multiple cross sections in orthogonal directions 

Carr was able to double check correlations of geological strata at crossing points along the 

sections and interpret depositional patterns along dip and strike orientations. 

 

 
Figure 4. Locations of data points and geologic cross sections superimposed on structure contour map of 

depth to basement rocks. Red to orange depth range = 200-5,000 ft below sea level (bsl). Yellow to dark 

blue depth range = 5,000 to 25,000 ft bsl. Offshore bathymetric contours in meters (blue lines).  

 

Steps used by GCCC researchers to (1) construct the digital geologic model, (2) characterize 

reservoir properties of lithology, porosity, and permeability, and (3) calculate capacity for 

geologic storage of CO2 were as follows: 

a) Compiled and reviewed geophysical log data, published literature, and maps 

b) Constructed digital data base of logs, geophysical data, and pre-existing maps using IHS 

Petra
©

 software 

c) Performed sequence stratigraphy-based interpretation to define gross reservoir 

architecture, which included construction of cross sections. 

d) Selected geological sequestration units (GSU) stratigraphic intervals: Pre-Tuscaloosa and 

Tuscaloosa  

e) Mapped structure of top of basement, Pre-Tuscaloosa, Tuscaloosa Fm., and upper 

Cretaceous surfaces 
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f) Mapped structure of base of Tuscaloosa and upper Cretaceous surfaces 

g) Made isopach maps of Pre-Tuscaloosa, Tuscaloosa, and upper Cretaceous intervals 

h) Performed cursory petrophysical analysis on well log curves to define permeable net 

sandstone and average porosity for GSU intervals 

i) Performed reservoir summation to count permeable net sandstone and determine average 

porosity within sand units for GSU intervals 

j) Mapped permeable net sandstone and average porosity for GSU intervals 

k) Converted structure contours of depth below ground surface for each GSU, by adding 

surface elevation to depth below sea level grids.  

l) Calculated CO2 densities at midpoint depths for each GSU strata within suitable depth 

intervals 

m) Calculated capacity for CO2 in net sands for each GSU and compiled results in ESRI 

ArcGIS
©

 software using the method of  MIT and NETL (2010). 

 

Below we describe in detail the sources of data, and methodologies used to (1) interpret 

reservoir properties from different types of logs (2) construct multiple types of maps, and (3) 

define GSUs. 

 

Data sources 
Since there has been no hydrocarbon production in the state of Georgia, a large, high-

quality subsurface data base was not readily available. Hence, we gathered and integrated data 

from a wide variety of sources, including research boreholes, water wells, and petroleum 

exploration wells. In addition, we relied upon core descriptions and previously published works 

to calibrate our interpretations and fill in data gaps, especially offshore. Sources of published 

work of particular usefulness in geologic correlations were those of Herrick (1961), Applin and 

Applin (1964; 1967), Dillon et al. (1979), Gohn et al. (1980), and Poppe et al. (1995). 

 We collected and utilized well logs from 74 wells for making stratigraphic 

interpretations. Vector log curves (Log Ascii Standard commonly referred to as “LAS”) were 

available for 30 of these wells, raster images for 68 wells, and we had both raster images and 

LAS curves for 22 wells. For mapping two key stratigraphic surfaces (top of Cretaceous, top of 

basement) that bound the majority of potential GSUs, we also utilized IHS Energy geologic 

formation top picks from 157 additional wells. Locations of all log and core data points are 

shown on fig. 3. 
Geophysical logs used to construct a geologic model for this project came from: 

 A compilation of logs from the former Georgia Geological Survey files, an 

effort previously funded by Southern Company 

 Additional former Georgia Geological Survey logs acquired by SSEB 

 IHS database commercial library of geophysical logs and geological 

formation picks 

 A2D Technologies commercial log library 

 BEG log library 

Multiple sets of offshore geophysical and stratigraphic data were previously collected 

primarily from ocean-going research vessels, and some from aircraft, by multiple research 

institutions/consortia during the 1970s and early 1980s: 

 United States Geological Survey 

 The University of Texas Marine Science Institute 
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 Continental Offshore Stratigraphic Test program 

 Deep Sea Drilling Project 

 Institut Francais du Petrole 

The types of geophysical data sets include: 

 Single- and multi-channel seismic reflection profiles 

 Seismic refraction profiles 

 Magnetic surveys 

 Free air and isostatic gravity surveys 

 2-D gravity and magnetic models 

 Side-scan sonar 

Many documents (maps, regional cross sections, reports, and published articles) have 

been produced from analyses of these offshore data sets, primarily by USGS researchers, but also 

from academic institutions. Previous interpretations of onshore geological data came from the 

Georgia Geological Survey, academic institutions, and a minor amount from industry 

researchers. 

 

Geophysical log interpretation 
Many types of information about rocks in the subsurface can be extracted from borehole 

geophysical logs including lithology, porosity, and permeability. These properties control the 

distribution and movement of fluids in the subsurface. It is easier to predict how fluids will move 

through clastic rocks (i.e. those composed primarily of gravel, sand, silt, and clay) than 

carbonates, where fluid movement is usually dominated by conduit flow (along fractures or other 

curvilinear features in the rocks). Emphasis is being placed on clastic reservoirs for GS of CO2 

because of the higher level of confidence with which fluid movement can be predicted. This 

applies to international geologic carbon sequestration projects and those being conducted in the 

U.S. 

Clastic rock units that serve as effective subsurface fluid reservoirs are contain 

sandstones with high porosity and permeability. Since not all sandstones are conducive to fluid 

flow, it is important to identify net permeable sandstone units in order to more accurately 

estimate reservoir capacity. Quantitative description of reservoir rocks is conducted using 

petrophysical analysis of geophysical logs. We performed cursory petrophysical analysis on well 

log curves to estimate permeable net sandstone and average porosity. 

 

Net sandstone estimates 
We used spontaneous potential (SP) or gamma ray (GR) curves on geophysical logs to 

estimate net sandstone. SP provides the most useful estimate because it qualitatively indicates 

permeable sandstone. The GR curve is better than SP for estimating total sandstone volume; 

however, the GR does not differentiate between permeable and “tight” (impermeable) 

sandstones, which contain non-clay, pore-filling cements that diminish porosity and 

permeability. Because of this difference, SP curves were used where ever available to estimate 

net permeable sandstone in our analysis of CO2 capacity. 

 There were two ways available to count net permeable sandstone from the available SP 

curves (1) direct interpretation from raster image curves (Fig. 5) and (2) automated summation 

from normalized vector curves (LAS; Fig. 6). In both cases, we used a guideline cutoff, beyond 

which, the SP deflection from a “shale base line” (Schlumberger, 1998, p. 3-5) was sufficiently 

negative to indicate permeable sandstone. A graphic comparison of these two methods is shown 
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in fig. 7. The cutoffs for the sand counts from raster log curves were more subjective than those 

for the LAS curves because SP readings directly from raster images are non-normalized. Hence 

the interpreter must choose a cutoff or even multiple cutoffs within a given well, such that most 

of the obvious permeable sandstone can be differentiated from the impermeable rocks below the 

“shale base line” (Schlumberger, 1998). Further, the cutoff line was used as a guide rather than a 

strict quantitative boundary, since the tops and bases of individual sandstone beds are marked by 

inflection points in the curves, which are typically close to a given cutoff, but frequently not 

exactly aligned with them and depend upon bed thickness (e.g., Schlumberger, 1998, p. 3-4, Fig. 

3-3). 

 

 
Figure 5. Example raster geophysical log image showing net permeable sandstone interpretations (yellow 

highlight). SP curve is solid in left hand track; GR curve is dashed. Annotations on far left show footage 

of net sandstone (and depths) for each interval. Total net permeable sandstone shown in this figure is 73.0 

ft (equals the sum of the footages). Note that while SP and GR curve shapes mimic each other, the 

permeable sandstone as indicated by the SP is a subset of the total sandstone indicated by the GR. 
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Figure 6. Example vector geophysical log (LAS) showing net permeable sandstone interpretations 

(yellow highlight) derived from SP curve. SP is solid blue curve in left hand track and VSHSP curve is 

solid black curve with <30% shale volume cutoff applied indicating net permeable sandstone. Total net 

permeable sandstone (sum of yellow-highlighted intervals in VSHSP curve) shown in this figure is 78.5 ft. 

Right-hand track shows SFL and ILM resistivity curves. 
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Figure 7. Comparison of net sandstone estimates from raster-SP (left track), and vector log (LAS) 

computations from SP (VSH_SP; middle track) and GR (VSH_GR; right track). VSH_SP and VSH_GR 

curves are solid black curve with <30% shale volume cutoff applied indicating net sandstone. Respective 

net sandstone estimates for SP-raster, SP-LAS and GR-LAS for this interval are 73.0 ft, 78.5 ft, and 173.0 

ft. 

 

The SP vector curves (LAS), were normalized by applying a “shale volume” model 

which converts the SP curve response into a shale percentage ranging from 0% to 100% after 

“100% clean sand” and “100% shale” parameters are defined: 

 

Eqn. 1.  VSHSP = ( SP - SPCL ) / ( SPSH - SPCL ); 
 

Where, 

 

VSHSP = Shale volume from the SP curve 

SP = SP curve reading (input) 

SPCL = SP reading in 100% clean sand (constant) 

SPSH = SP reading in 100% shale (constant). 

 

Likewise, for the 11 wells lacking SP curves, the GR was substituted in a similar fashion (Eqn.’s 

2 and 3), using a similar shale volume method, with the addition of the Clavier correction 
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(Asquith and Krygowski, 2004). Ten of these wells are located up dip from the 2,600-ft depth 

limits for CO2 storage and were thus not critical to the accuracy of our capacity estimates. 

 

Eqn. 2.  IGR = ( GR - GRCL ) / ( GR SH - GRCL ); 

 

Where, 

 

IGR = Gamma Ray Index: Intermediate calculation of shale volume 

from the GR curve 

GRCL = SP reading in 100% clean sand 

GRSH = SP reading in 100% shale. 

 

Finally, the Clavier non-linear correction was applied: 

 

Eqn. 3.  VSHGRc = 1.7 - ( 3.38 - ( VSH + 0.7 )**2 )**0.5; 

 

Where, 

 

VSHGRc = Shale volume from the GR curve, corrected for overly 

optimistic non-linearity of Eqn. 2. 

 

Based on visual inspection of  VSHSP and VSHGRc logs, a cutoff of 30% was used to define net 

sandstone, i.e., a shale volume of less than 0.3 was deemed to indicate permeable sandstone. 

 

Porosity estimates 
Vector (LAS) porosity curves were available for 15 wells. Porosity estimates for ten (10) 

of the wells were based on sonic logs; the remaining five (5) wells were based on density 

porosity. Raster porosity logs were also available for additional wells, but due to time/cost 

constraints were not utilized for porosity mapping. 

 

Sonic porosity was calculated using the empirically modified Wyllie time average equation 

(Wyllie, 1956; Alberty, 1994): 

 

Eqn. 4.  PHIS  =  0.67 * ( (DT - DTM) / (DTFL- DTM) ) 

 

Where, 

 

PHIS = Sonic porosity 

DT = Sonic log delta-t reading (input) 

DTM = Sonic delta-t constant for rock matrix (sandstone = 55.5  -sec/ft) 

DTFL= Sonic delta-t constant for fluid (salt water = 189 -sec/ft) 

 

Density porosity was calculated using: 

 

Eqn. 5.  PHID  = (RHOM - RHOB)/(RHOM - RHOFL) 
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Where, 

 

PHID = Density porosity 

RHOB = Bulk density log reading (input) 

RHOM = Bulk density of rock matrix (sandstone = 2.65 gm/cc) 

RHOFL= Bulk density of fluid (salt water = 1 gm/cc)  

 

Reservoir summations 
Using the results of the petrophysical analysis, summations of the feet net permeable 

sandstone and average porosity were made for wells from which data these were available. A 

summation is a count of the footage of a particular set of petrophysical characteristics that define 

the quality of a reservoir for a particular purpose. In this study, a high quality interval would be 

one having a large footage of net permeable sandstone with a high average porosity. 

 

Net Sandstone summation 

Using our interpretation platform, Petra, we were able to automate the counting of net 

permeable sandstone from both raster images and vector (LAS) log curves for each GSU. Table 

1 lists the results of the net permeable sandstone counts and data sources for wells used in the 

study. 

 

Porosity summation 

Again, utilizing Petra, Carr was able to automate the determination of average porosity 

within the permeable sandstone units for each GSU. Specifically, the program was told to 

average only porosity values where net sandstone satisfied the 30% cutoff or footages defined by 

raster interpretations of net permeable sandstone. Table 2 shows the average porosity calculated 

within the net permeable sandstone intervals and porosity data sources for wells used in the 

study.
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Table 1. Net permeable sandstone summations for wells used in study. TUSCALOOSA GSU PRE-TUSCALOOSA GSU 

State County Well Label Operator TD Net Sandstone Data Source Net Sandstone Data Source 

AC BRUNSWICK 913-1 GETTY OIL COMPANY 7,000 4 RASTER-SP 1,004 RASTER-SP 

AC BRUNSWICK 1005-1 TRANSCO EXPL&PROD CO 11,635 0 LAS-SP 1,530 LAS-SP 

AC JACKSONVILLE 564-1 EXXON CORPORATION 12,863 15 RASTER-SP 1,657 RASTER-SP 

AC JACKSONVILLE 472-1 EXXON CORPORATION 7,578 0 RASTER-SP 248 RASTER-SP 

AC JACKSONVILLE COST #GE-1 OCEAN PRODUCTION CO 13,254 0 LAS-SP 1,661 LAS-SP 

AC JACKSONVILLE 427-1 TENNECO OIL CO 7,472 23 RASTER-SP 307 RASTER-SP 

AC JACKSONVILLE 208-1 TENNECO OIL CO 7,760 0 RASTER-SP 263 RASTER-SP 

FL ALACHUA JOSIE PARKER #1 TIDEWATER OIL CO 3,218 76 RASTER-SP 0 RASTER-SP 

FL BAKER H L HUNT #1 HUNT OIL CO 3,348 39 RASTER-SP 0 RASTER-SP 

FL DIXIE P C CRAPPS A-1 SUN OIL COMPANY 5,103 106 RASTER-SP 244 RASTER-SP 

FL SUWANNEE J W TILLIS #1 SUN OIL COMPANY 3,568 65 RASTER-SP 12 RASTER-SP 

FL TAYLOR BROOKS-SCANLON INC BLOCK 33 #1 GULF OIL CORP 5,243 61 RASTER-SP 16 RASTER-SP 

GA APPLING Mrs. W. E. Bradley #1 WEATHERFORD J E ETAL / Felsenthal-Weatherford 4,098 419 RASTER-SP 36 RASTER-SP 

GA ATKINSON Doster-Ladson E #1 Sun Oil Co. 4,296 369 RASTER-SP 33 RASTER-SP 

GA BROOKS Rogers Sr. B- #1 HUGHES D E 3,850 315 RASTER-SP 72 RASTER-SP 

GA Burke Millers Pond GGS 859 61 RASTER-GR 0 RASTER-GR 

GA Burke Girard Test USGS 1,385 59 RASTER-GR 0 RASTER-GR 

GA CALHOUN J. W. West #1 Sowega Minerals Exploration 5,265 148 RASTER-SP 832 RASTER-SP 

GA CAMDEN Pennington Union Camp #1 Amoco Production Company 10,000 53 RASTER-SP 0 RASTER-SP 

GA Camden J.A. Buie #1 California 4,969 190 RASTER-SP 120 RASTER-SP 

GA CAMDEN Union Camp B-1 Pan American Petroleum Corp. 4,690 53 RASTER-GR 0 RASTER-GR 

GA CHARLTON O.C. Mizell #1 PENNZOIL PRODUCNG CO / South Penn Oil Co. 4,577 117 RASTER-SP 20 RASTER-SP 

GA CLINCH Lem Griffis #1 MAROTT G J ETAL / Luke Grace Drilling Co. 4,588 68 RASTER-SP 2 RASTER-SP 

GA CLINCH Timber Products Co.  #1 Wiley P. Ballard Jr. 4,282 220 RASTER-SP 59 RASTER-SP 

GA Coffee Terrel Thurman #1 Carpenter Oil Company 4,130 178 RASTER-SP 102 RASTER-SP 

GA Colquitt H. Parker #1 Houston Oil & Minerals Corp. 6,902 298 RASTER-SP 662 RASTER-SP 

GA CRISP Cecil Pate #1 KERR-MCGEE CORP 5,010 222 RASTER-SP 601 RASTER-SP 

GA DECATUR G.E. Dollar #1 Renwar Oil Corporation 4,995 396 RASTER-SP 469 RASTER-SP 

GA DODGE B&L FARMS #1 ATLANTA GAS LIGHT CO 4,529 186 LAS-SP 618 LAS-SP 

GA DOOLY H.E. Walton #1 DOOLEY OIL ASSOC /Georgia-Florida Drilling Co 3,748 189 RASTER-SP 494 RASTER-SP 

GA EARLY Susie Wilson #1 EXXON CORPORATION 9,176 162 LAS-SP 1,139 RASTER-SP 

GA ECHOLS Superior Pine Prod #3 Hunt Oil Co. 4,003 110 RASTER-SP 149 RASTER-SP 

GA GLYNN Union Bag Camp Paper Co. No. ST- Humble Oil & Refining Co. 4,632 57 RASTER-SP 15 RASTER-SP 

GA GLYNN Union Camp #1 Pan American 4,439 199 RASTER-SP 0 RASTER-SP 
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GA Glynn Scott & Mead Timber  #1 USGS / William K. Davis 4,516 191 RASTER-SP 0 RASTER-SP 

GA Glynn Union Camp Corp #1 William K. Davis 8,468 213 LAS-SP 72 LAS-SP 

GA JEFF DAVIS J.L. Sinclair No. 1 Chevron USA, Inc. 4,063 164 LAS-SP 140 LAS-SP 

GA Jeff Davis A.P. Snipes et al. #1 Chevron USA, Inc. 11,470 212 LAS-SP 45 LAS-SP 

GA JEFF DAVIS SNIPES A R #1 Chevron USA, Inc. 11,470 133 LAS-SP 50 LAS-SP 

GA Laurens* Grace McCain #1 Calaphor MFG. Corp. 2,548 188 RASTER-SP 138 RASTER-SP 

GA LIBERTY Jelks & Rodgers No.1 E.B. LaRue 4,254 388 LAS-SP 11 LAS-SP 

GA LOWNDES LANGSDALE #1 HUNT OIL CO 5,052 50 LAS-SP 166 LAS-SP 

GA MITCHELL J.H. Pullen No. 1 Stanolind Oil & Gas Co 7,487 385 LAS-SP 388 LAS-SP 

GA PIERCE Adams-McCaskill No. 1 Pan American Petroleum Corp. 4,375 26 LAS-SP 4 LAS-SP 

GA SCREVEN Helen H. Pryor No. 1 F.W. McCain 2,677 183 RASTER-SP 34 RASTER-SP 

GA Screven MILLHAVEN TEST HOLE USGS-DOE-GGS-GDNS 1,452 19 RASTER-GR  RASTER-GR 

GA SEMINOLE Spindle Top 3 SEALY J R / C.E. Jack Prince 7,620 563 RASTER-SP 698 RASTER-SP 

GA STEWART W. C. Bradley Co #1 W.O. Heinze & A.N. Spanel 2,916 122 LAS-SP 191 LAS-SP 

GA TELFAIR Henry Spurlin #1 Parsons & Hoke 4,008 131 RASTER-SP 69 RASTER-SP 

GA TREUTLEN JIM L GILLIS SR #1 BARNWELL DRLG CO INC 3,270 74 RASTER-SP 109 RASTER-SP 

GA TREUTLEN Jim Gillis No. 1 McCain and Nicholson 3,253 111 RASTER-SP 190 RASTER-SP 

GA Washington Malpasse SX 79 A- #1 Southeastern Exp. 5,641 100 LAS-GR 15 LAS-GR 

GA Washington McCoy #1 SOUTHEASTERN EXPL. & PROD. 9,385 99 RASTER-GR 4 RASTER-GR 

GA Washington SX 79 - Malpasse #1 Southeastern Exploration & Prod 2,576 31 RASTER-GR 0 RASTER-GR 

GA WAYNE C.D. Hopkins et al. #1 DAVIS WILLIAM K 4,300 224 RASTER-GR 0 RASTER-GR 

GA WAYNE Union Bag & Paper Co. No. 1 Humble Oil & Refining Co. 4,552 309 LAS-SP 42 LAS-SP 

GA WHEELER MCRAE DB #1 SONAT EXPL INC 3,642 100 LAS-GR 45 LAS-GR 

GA Wheeler Ronnie Towns #1 Southern Natural Gas Co. 4,075 227 LAS-SP 7 LAS-SP 

GA Wilkinson Sepeco Hutton #1 Pan American 1,362 49 RASTER-SP+GR 5 RASTER-SP+GR 

GA Worth Varner #1 J.D. Simmons, Inc. 4,200 351 RASTER-SP 241 RASTER-SP 

SC Barnwell Savannah River Site #P5A / P-21 DOE 1,145 39 RASTER-GR 0 RASTER-GR 

SC BEAUFORT HILTON HEAD TEST WELL #1 TOWN OF HILTON HEAD ISLAND 3,833 396 LAS-SP 108 LAS-SP 

SC Beaufort Parris Island No. 2   3,454 109 RASTER-SP 3 RASTER-SP 

SC COLLETON Norris Lightsey #1 ESSEX OIL & GAS CO 12,750 24 LAS-SP 0 LAS-SP 

SC Colleton WATERBORO SHOTHOLE USGS 2,213 0 RASTER-SP 78 RASTER-SP 

SC Dorchester St. George No. 1 USGS 1,989 89 LAS-SP 16 LAS-SP 

SC Dorchester Clubhouse Crossroads Corehole #1 USGS 2,598 70 RASTER-SP 19 RASTER-SP 

SC Florence Lake City No. 34 USGS 918 35 RASTER-GR  RASTER-GR 

SC Jasper SCDNR - DOE C-15 SCDNR 2,905 54 LAS-SP 91 LAS-SP 
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Table 2. Average porosity summations for wells 

used in study. 
TUSCALOOSA 

PRE-

TUSCALOOSA 

State County Well Label Operator TD 
Average 

Porosity 

Data 

Source 

Average 

Porosity 

Data 

Source 

AC BRUNSWICK 913-1 GETTY OIL 

COMPANY 

7,000 0.211 PHIS 0.206 PHIS 

AC BRUNSWICK 1005-1 TRANSCO 
EXPL&PROD CO 

11,635 0.000 PHIS 0.180 PHIS 

GA CAMDEN Pennington 

Union Camp 
#1 

Amoco Production 

Company 

10,000 0.240 PHIS  no sand 

GA Colquitt H. Parker #1 Houston Oil & 

Minerals Corp. 

6,902 0.319 PHIS 0.247 PHIS 

GA EARLY Susie Wilson 

#1 

EXXON 

CORPORATION 

9,176 0.361 PHIS 0.333 PHIS 

GA Glynn Union Camp 
Corp #1 

William K. Davis 8,468 0.283 PHIS 0.261 PHIS 

GA JEFF DAVIS J.L. Sinclair 

No. 1 

Chevron USA, Inc. 4,063 0.267 PHID 0.237 PHID 

GA WAYNE C.D. Hopkins 
et al. #1 

DAVIS WILLIAM 
K 

4,300 0.281 PHID  NFP 

GA WAYNE Union Bag & 

Paper Co. No. 

1 

Humble Oil & 

Refining Co. 

4,552 0.257 PHIS 0.220 PHIS 

GA WHEELER MCRAE DB 
#1 

SONAT EXPL INC 3,642 0.308 PHIS  NFP 

GA Wheeler Ronnie Towns 

#1 

Southern Natural 

Gas Co. 

4,075 0.300 PHIS 0.245 PHIS 

SC BEAUFORT HILTON 
HEAD TEST 

WELL #1 

TOWN OF 
HILTON HEAD 

ISLAND 

3,833 0.349 PHIX 0.120 PHIX 

SC COLLETON Norris 

Lightsey #1 

ESSEX OIL & GAS 

CO 

12,750 0.083 PHIS  NFP 

SC Dorchester St. George No. 
1 

USGS 1,989 0.183 PHID 0.232 PHID 

SC Jasper SCDNR - 

DOE C-15 

SCDNR 2,905 0.346 PHID 0.242 PHID 

 

Map construction and definition of geologic sequestration units 
We posted the results of Table 1 at their respective well locations and created 

isopach contour maps of net permeable sandstone. Likewise, for the isoporosity maps, we 

posted the results of Table 2 at their respective well locations and created isopach contour 

maps of average porosity. Interval isopach maps of both GSU’s were made. First, the 

structure grid of a given unit’s base was subtracted from the structure grid of the top. 

Second, Carr determined the interval isopach values from well control, again by 

subtracting top from base of the given interval. Finally, he used the ‘grid’ isopach Petra 

software utility to guide the contouring of the well control to ensure that the series of 

isopach maps and subsequent net sandstone isopach maps would be volumetrically valid. 

After evaluating the cross sections (fig. 4) and preliminary maps, and 

supplementing the stratigraphic unit depth information from the many offshore 

geophysical studies (e.g. Dillon et al. (1979) map of top of Cretaceous from offshore 

reflection seismic surveys conducted during a series of cruises by, the U.S. Geological 

Survey and others), we selected three intervals to evaluate further. The approach was to 

identify top of “basement” (bottom of clastic sediments in which CO2 could be stored, 

which is defined later in report; fig. 4, plate 1) and top of Cretaceous (plate 2) horizons as 

upper and lower boundaries of potential geologic storage units. After many iterations of 
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correlation, we created gross isopach and net reservoir sandstone/limestone maps of the 

following major stratigraphic packages: 

 

4. Pre-Tuscaloosa sandstones/conglomerates of undetermined Cretaceous to 

Triassic age 

5. Tuscaloosa early Late Cretaceous (equivalents) 

6. Post- Tuscaloosa sandstones and limestones of Late Cretaceous age 

 
Table 3. Stratigraphic intervals of interest for geologic sequestration of CO2. 

Geological 

Sequestration 

Unit (GSU) 

Approximate 

Geological 

Age 

Lithology 
Geographic 

Occurrence 

Approximate 

Depth Range 

(ft) 

Top / Base 

Post-

Tuscaloosa 

Upper 

Cretaceous* 

Late Upper 

Cretaceous 

carbonates 

(minor 

sandstone) 

offshore 

continental 

shelf (OCS) 

2,600-5,800 

Upper 

Cretaceous 

/ Upper 

Tuscaloosa 

Tuscaloosa 
Early Upper 

Cretaceous 
sandstone 

southern 

portion of 

coastal plain 

2,600-4,500 

Upper 

Tuscaloosa 

/ Base of 

Lower 

Tuscaloosa 

Sand 

Pre- 

Tuscaloosa 

Lower 

Cretaceous, 

Upper 

Jurassic 

sandstone 

southwestern 

portion of 

coastal plain; 

OCS 

2,600-11,000 

Base of 

Lower 

Tuscaloosa 

Sand / 

Basement 

* Not evaluated for CO2 capacity in this report 

 

Assuming typical subsurface pressure and temperature gradients, supercritical 

CO2 can generally be stored at depths greater than 800 m (~2600 ft). This minimum 

sequestration depth is marked (red horizontal dashed line) on report cross sections A-A’ 

and B-B’ that are shown in figures 8 and 9 and plates 3 and 4. The thick cyan-colored 

line represents approximate Eagle Ford-age maximum flooding surface; Tuscaloosa and 

older sandstone bearing strata lie beneath it, and a mixture of sandstone and limestone 

bearing strata occur above it. The top of the Cretaceous is represented by the thick green 

unconformity line; top of the basement complex is shown by the thick dark purple 

unconformity line. 
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Figure 8. Structural cross section A-A’. NW to SE dip section from Fall Line to Federal OCS wells near continental shelf edge. 

 

 

depth = 2600 ft 
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Figure 9. Structural cross section B-B’. NE to SW strike section from South Carolina border to Florida border 
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Inspection of the cross sections reveals that only two of the units have significant CO2 

sequestration potential (large unit thicknesses below 2,600 ft depth) in Georgia and the adjacent 

offshore. These are Pre-Tuscaloosa and Tuscaloosa GSU intervals. The upper Cretaceous Post-

Tuscaloosa interval has sufficient thickness offshore (fig. 8), but there it is composed primarily 

of carbonate rocks. A map view of the areal extent of our two GSUs is shown by the red and 

brown polygons in figures 1 and 10. The extents of these polygons were defined by grid 

boundaries for the western and southern sides. The northern (updip) extent of each polygon was 

determined by where the depth below ground surface of the GSU is equal to 2,600 ft. Within the 

polygons each GSU interval appears at depths greater than 2, 600 ft. Extent of the eastern edge 

of GSUs was determined by where depth of seawater equals 400 m, which is approximately the 

edge of the continental shelf (figures 3, 10). It is not likely that drilling wells thousands of feet 

below the seafloor for offshore GS will take place in ocean water deeper than 400 m, or off the 

edge of the continental shelf in the near future. These same polygons are also shown on maps in 

subsequent sections (figures 11-19) where we provide results for each of GSUs.  

 

 

 
Figure 10. Graphical method used to select areal extent of geologic sequestration units. Brown 

lines are contours of top of Pre-Tuscaloosa GSU. The updip (northern) edge of this GSU corresponds to 

the 2,600 ft depth below surface contour line (light blue). The darker blue lines show water depth in the 

Atlantic Ocean. 



 

24 

 

Discussion and Results 
 

Previous stratigraphic correlations of the Georgia coastal plain occurred primarily in 

response to oil exploration activity. After the 1943 discovery of Sunniland field in south 

Florida’s Collier County, FL became an exploration target. Exploration moved northward to GA 

and deep tests there allowed study of cores, cuttings and geophysical logs. Significant 

contributions were made by Applin and Applin (1944; 1964; 1967) and Herrick (1961). These 

works focused primarily on paleontologic evaluation of well cuttings and the establishment of 

traditional time-rock units. Although no commercial oil was found in GA as a result of onshore 

drilling, exploration proceeded in the Atlantic offshore continental shelf from the late 1960’s and 

accelerated during the 1970’s.  

Several broad stratigraphic studies were performed in advance of testing Georgia’s 

Atlantic offshore continental shelf. The most notable works include Maher and Applin (1971), 

Brown et al. (1979), Gohn et al. (1980), and Kramer and Arden (1980). All of these authors 

provided cross sections of parts of the GA coastal plain, many of which provided useful guidance 

for this project, particularly those of Maher and Applin (1971) and Gohn et al. (1980). Published 

analyses of seismic and well data from late 1970’s offshore oil exploration helped identify the 

major time-rock units and provided geophysical data enabling interpretations for linking 

Georgia’s onshore and offshore strata (Buffler et al., 1978; Dillon et al., 1978, 1983; numerous 

references in Poag, 1978). Poppe et al.’s (1995) work providing facies and paleontologic 

interpretations of all Georgia’s onshore deep tests was very useful to us, particularly in linking 

the pre-Tuscaloosa intervals in the offshore to the onshore of southwest Georgia. 

In contrast to our approach, the previous works did not attempt to apply sequence 

stratigraphic concepts; nor were they as geographically expansive as these correlations, which 

link the GA coastal plain, parts of adjacent FL and SC, as well as the offshore continental shelf. 

Here we show the distribution and thicknesses of geologic units from “basement” up through the 

top of upper Cretaceous rocks within and between the deep sedimentary basins (western and 

eastern GA embayments) and out into the offshore Atlantic subseafloor. The stratigraphic 

interpretation presented in cross sections and maps are primarily based on Carr’s correlation of 

geophysical logs, augmented with information from previously published reports. We use results 

of these interpretations to estimate capacity of the Pre-Tuscaloosa and Tuscaloosa GSUs. 

 

Geologic basement units 
“Basement” as used in this study refers to the shallowest appearance of crystalline rocks 

in geophysical logs (brown interval on cross sections in figures 8 and 9 and plates 3 and 4), or 

where log coverage is limited, acoustic basement defined by geophysical surveys (e.g. Buffler et 

al., 1978), and limited core data. Character of the basement differs in various regions of the study 

area. Crystalline metamorphic rocks like those exposed in the Piedmont physiographic province 

east of the Appalachian Mountains (fig. 1) underlie landward portions of the GA coastal plain 

(e.g., Dillon et al., 1978).  

Pre-Cretaceous basement underlying the central GA uplift/FL Pennisular arch (Suwannee 

basin of others) (fig. 3) is composed of early Paleozoic (Ordovician, Silurian, and Devonian) 

sedimentary rocks that are underlain by felsic igneous rocks (granite and rhyolite) that are typical 

of continental crust. These rocks are thought to be fragments of Pangea left behind as the 

supercontinent began to break up during the Late Triassic approximately 200 million years ago. 

These Lower Paleozoic sandstones and shales are more similar to those found in northwest 
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Africa than those of North America (e.g., Aplin and Aplin, 1944; Smith, 1982; Milton, 1972; 

Milton, and Grasty, 1969; Heatherington and Mueller, 2003). The Pangean basement that 

underpins the Florida arch was also penetrated by the southernmost offshore Georgia wells.  
In the rifted terrain of north central FL/southern GA/southern SC and offshore beneath 

the Atlantic seafloor (early Mesozoic rift basins on fig. 3), many wells have penetrated mafic 

igneous rocks (diabase and basalt) that are that more similar to oceanic than continental crust 

(Buffler et al., 1978; Dillon et al., 1978; Chowns and Williams, 1983). According to McBride et 

al. (1989), these mafic igneous rocks form an unconformity that separates underlying faulted 

early Mesozoic sediments from overlying later Mesozoic and Cenozoic coastal plain sediments, 

which are generally unfaulted. This unconformity, referred to as the J-reflector by Schilt et al. 

(1983), is thought to cover an ~10,000 km
2
 area that extends from western GA to over 150 km 

offshore underneath the Atlantic continental shelf. A basalt sample taken from core collected 

near Charleston, SC and dated by Lanphere (1983) at 184 Ma (middle Jurassic) is assumed to be 

correlative with other mafic igneous rocks found at depth in GA. The idea is that during early 

Mesozoic continental rifting (stretching and tearing of the continental crust) mafic igneous rock 

flowed out over a large area much like that observed today on the Colorado Plateau of the 

western U.S.  

It appears that previous researchers and practicing geologists frequently picked these 

mafic igneous rocks as basement. In fact, it appears that many wells “called TD” (i.e., ceased 

drilling) when “basement” was penetrated. Given that there probably few porous, permeable 

reservoirs beneath this zone, it was a reasonable assumption to define these early Mesozoic 

layered igneous strata as “economic basement” for the practical purpose of oil exploration and 

for this project. For onshore Georgia wells where basement was defined by the drill bit’s first 

encounter with basalt or diabase, the basement structure contour map (fig. 11) probably 

represents a minimum estimate to depth of basement (Milton and Grasty, 1972; Barnett, 1975). 

The basement structure presented here (figs. 4, 11) represents depths to Piedmont, Paleozoic, and 

mafic igneous rocks contoured as a single surface. Black lines on fig. 11 are the same 

embayment central axes shown on fig. 3. Both of the GSUs are contained within upper Jurassic 

to early upper Cretaceous strata overlying basement rocks. 
 In the remaining sections we present details of the two GSUs defined herein, including 

structure contour maps of tops of the intervals, net sand isopach and iso-porosity maps. We also 

detail the approach and results of capacity estimates for these two GSUs. 

 



 

26 

 

 
Figure 11. Geologic sequestration unit (GSU) areas superimposed on structure contour map of depth-to-

basement-rocks. Red to orange depth range = 200-5,000 ft below sea level (bsl). Yellow to dark blue 

depth range = 5,000 to 25,000 ft bsl. 

 

Geologic sequestration units 
The two GSU intervals with sufficient thicknesses of net permeable clastic strata, at 

depths deep enough to store CO2 in supercritical phase, are Pre-Tuscaloosa and Tuscaloosa. Pre-

Tuscaloosa GSU strata in which CO2 can be stored are sandstones and conglomerates of 

undetermined age (thought to be late Jurassic) to Cretaceous age. Strata of the Tuscaloosa GSU 

are primarily sandstones equivalent to Tuscaloosa Fm. strata of early upper Cretacous age. The 

surface footprints of these two vertically stacked intervals are shown for comparison as red and 

brown polygons in figures 1 and 11.  

 

Pre-Tuscaloosa GSU 
 The base of the Pre-Tuscaloosa GSU is defined by the structure contour map on top of 

basement (figs. 4, 8, 9, and 11, plates 1, 2, and 3). The file names for geographic information 

system (GIS) shape files that accompany this report are BASEMENT STRUCTURE.* (.shp and 

associated files). The top of Pre-Tuscaloosa GSU is the base of the overlying Tuscaloosa Fm. 

(fig. 12) or time equivalent clastic deposits in southern GA and offshore below the Atlantic 

seafloor. The file names for geographic information system (GIS) shape files that accompany 

this report are BASE TUSCALOOSA STRUCTURE.* (.shp and associated files).   
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Figure 12. Structure contour map of base of lower Tuscaloosa Fm., which is the top of the Pre-Tuscaloosa 

GSU. 

 

The top of the Pre-Tuscaloosa GSU ranges from ~2,400 ft below sea level (bsl) in the 

northwestern portion to 5,800 ft bsl on its eastern edge (fig. 12). The SE GA embayment axis in 

figs. 3 and 11 marks the deepest part of the embayment, which lies south of the zone of early 

Mesozoic rift basins. The vertical scale for top of Pre-Tuscaloosa structure is the same as in the 

basement map (figs. 4, 11) for comparison of the elevations. The entire embayment extends 

farther north roughly parallel to the Atlantic coastline (green and light blue shaded areas in fig. 

11 and northeast corner of the GSU in fig. 12). 

Correlation and mapping of the Pre-Tuscaloosa interval throughout the GSU (figs. 8, 9, 

13 and plates 2, 3) allows us to show that net sands (1) thin over the Suwannee saddle, and (2) 

dramatically thicken in the SW and SE GA embayments. The full extent of this basin can also be 

seen in the Pre-Tuscaloosa net permeable isopach sand map (fig. 13). Here net sand thickness 

reaches a maximum of about 2, 500 ft in offshore portions of the GSU (figs. 8, 13). The other 

thick accumulation of net sand in the Pre-Tuscaloosa GSU corresponds to the location of the SW 

GA embayment (figs. 3, 13). Note that the top structure elevation patterns and the net sand 

thicknesses of the Pre-Tuscaloosa GSU mimic the basement structure. These patterns suggest 

that these two basins were subsiding relative to the central uplift areas in FL and GA during Pre-

Tuscaloosa sediment deposition. The file names for geographic information system (GIS) shape 

files that accompany this report are PRETUSCALOOSA NETSAND.* (.shp and associated 

files).  
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Figure 13. Pre-Tuscaloosa GSU net sand isopach map. 

 

According to the porosity map of the Pre-Tuscaloosa GSU (fig. 14) generated in this 

study, strata in the SW GA embayment have higher porosity (darker blue areas) than those in the 

SE GA embayment. This apparent net sand thickening influences capacity estimates for this area 

as will be seen in the following section. The file names for geographic information system (GIS) 

shape files that accompany this report are PRETUSCALOOSA POROSITY.* (.shp and 

associated files). 

 
Figure 14. Pre-Tuscaloosa GSU porosity map. Yellow dots show locations of geophysical logs used to 

estimate porosity. 
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Tuscaloosa GSU 
 The base of the Tuscaloosa GSU is the structural top of the Pre-Tuscaloosa GSU (figs. 8, 

9, 12). The structural top of this GSU corresponds to the top of the Tuscaloosa or time equivalent 

formations (figs. 8, 9, and 15, plates 2, 3). The vertical scale for top of Tuscaloosa structure is the 

same as in the basement and top of Pre-Tuscaloosa maps (figs. 4, 11, 12) for comparison of the 

elevations; the top of the Tuscaloosa GSU ranges from ~2,400 ft bsl to 5,600 bsl in offshore 

regions of the SE GA embayment. The file names for geographic information system (GIS) 

shape files that accompany this report are TOP TUSCALOOSA STRUCTURE.* (.shp and 

associated files). 

Correlation and mapping of the Tuscaloosa throughout the GSU (figs. 8, 9, 15 and plates 

2,3) allow us to show that suitable sand intervals (1) disappear from offshore portions of the SE 

GA embayment and (2) thicken slightly in the SW GA embayment. During Tuscaloosa time 

carbonate rocks were being deposited in the eastern, offshore portions of the SE GA embayment 

as sea level was rising relative to the continental margin (Frazier and Schwimmer, 1987). The 

structural surface of the basement, and the Pre-Tuscaloosa GSU as well, appear to have 

influenced the depositional patterns of sand within the Tuscaloosa GSU, at least within the SW 

GA embayment. For example see the large area of relatively thicker net sand on the western side 

of the Tuscaloosa GSU (fig. 16). However, total net sand in the Tuscaloosa GSU is much thinner 

(maximum thickness of 77 ft) than in the Pre-Tuscaloosa GSU (maximum thickness of  2, 500 

ft). Also note that by early upper Cretaceous (Tuscaloosa) time the area of thickest permeable 

sands in eastern GA shifted onshore to the northwest (fig. 16) relative to an offshore location in 

the Pre-Tuscaloosa GSU (fig. 13). The file names for geographic information system (GIS) 

shape files that accompany this report are TUSCALOOSA NETSAND.* (.shp and associated 

files). 

 

 
Figure 15. Structure contour map of top of upper Tuscaloosa Fm., which is the top of the Tuscaloosa 

GSU. 
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Figure 16. Tuscaloosa GSU net sand isopach map. 

 

As in the Pre-Tuscaloosa GSU, the areas of highest porosity in the Tuscaloosa GSU (fig. 

17) correspond spatially with the areas of thickest net sand (fig. 16). The file names for 

geographic information system (GIS) shape files that accompany this report are TUSCALOOSA 

POROSITY.* (.shp and associated files).  

 

 
Figure 17. Tuscaloosa GSU porosity map. Yellow dots show locations of geophysical logs used to 

estimate porosity. 
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Capacity estimates 
 The methodology used to estimate CO2 storage capacity and the resulting capacity 

estimates for each of the two GSUs is described below. Estimates for the capacity of subsurface 

geologic units to store CO2 depend on the thickness of permeable sand present. After identifying 

units with enough permeable sand in locations appropriate for GS of CO2, we followed a series 

of additional steps to come up with the capacity estimations for the Pre-Tuscaloosa and 

Tuscaloosa GSUs. As previously detailed, the steps we took to select the GSUs included 

delineation of structural tops and bottoms, summation of net permeable sands, and estimation of 

porosity for each unit. All of this work was completed in IHS Petra
©

 software and exported to 

Geographic Information Systems (GIS) shape files for further analysis using ESRI ArcGIS 

(ArcMap
©

) software. 

 Work completed in ArcMap for each GSU included: 

 Interpolated Petra-generated depth, area, and thickness contours to generate 

Arc-grids (metric units) 

 Adjusted depth below sea level grids (top and bottoms of units) to depth 

below surface for onshore areas by adding ground surface elevation (fig. 10) 

 Defined GSU area polygons by (1) trimming northern edge of grid along 2, 

600 ft (800 m) depth below ground surface contour, (2) trimming eastern edge 

along 400 m bathymetric contour, which approximates the seaward extent of 

the continental shelf (fig. 10).  

 Calculated mid-point depths below ground surface for each grid cell within 

each polygon to use in CO2 density calculation. For the Pre-Tuscaloosa GSU 

this is the mid-point between the top of basement and the base of the 

Tuscaloosa Fm. For the Tuscaloosa GSU this is the mid-point between the top 

and bottom of the Tuscaloosa Fm. 

 Interpolated Petra-generated net sand and porosity contours to generate Arc-

grids 

 Performed grid algebra within each 2.3 km
2
 grid cell (number of grid cells 

within the Pre-Tuscaloosa GSU = 82,369; number of grid cells within the 

Tuscaloosa GSU = 72,314) using a formula that defines mass resource 

estimate potential of CO2 in saline formations (MIT, 2010; NETL, 2010):  

 

Eqn. 4. G
CO2

 = A
t 
  h

g
  

t
  

CO2
  E

saline
 

 

Where: 

 

G
CO2

 = mass of CO2 stored (kg) 

A
t
 = geographical area defining region of CO2 storage (m

2
) 

h
g
 = gross formation thickness (m)  


t
 = total porosity 


CO2

 = density of CO2 estimated at temperature and pressure of anticipated storage 

(reservoir) conditions (kg/m
3
) 

E
saline

 = CO2 storage efficiency factor (we used E
P50

 = 0.02, and 0.004, 0.055) 
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We calculated CO2 density for each grid cell midpoint-depth using the Winprop
©

 routine 

(an equation solver) within CMG (Computer Modeling Group LTD.) reservoir simulation 

software to solve the Peng-Robinson equation of state (Peng and Robinson, 1976). Simply stated, 

Peng-Robinson is an equation that calculates molar volume of a fluid at specified temperature 

and pressure, and also using other input values such as the universal gas constant, R, critical 

temperature, Tc, etc. Then by knowing the molecular mass of CO2, one can calculate the density 

because volume = mass/density. The steps taken to get to the point of solving for CO2 density 

included: 

 Assigned a temperature for specific mid-point depths in GSUs assuming a 

surface temperature of 59 °F and a gradient of 1.5 F/100 ft (Griffin et al., 

1969; Reel and Griffin, 1971), changing temperature every 30 ft 

 Increased pressure with depth according to a hydrostatic pressure gradient of  

 Calculated CO2 density for tabulated mid-point depths using the Peng-

Robinson equation described above.   

 Converted resulting density values in lb/ft
3
 to kg/m

3
 and interpolated to Arc-

grid format. 

 

Results of the capacity calculations (using Eqn. 4) for both the Pre-Tuscaloosa and 

Tuscaloosa GSUs are shown in figures 18 and 19, and table 4. The color scale for capacity is the 

same for both the Pre-Tuscaloosa and the Tuscaloosa GSUs (figs. 18, 19); thus it is more obvious 

that there is much higher capacity for GS of CO2 in the deeper Pre-Tuscaloosa than in the 

shallower Tuscaloosa GSU. In both images, grid cells shaded gray mark areas of zero capacity.  

The total capacity for the Pre-Tuscaloosa GSU, using an efficiency factor (E) of 2 

percent, is ~111 Gt over an area of ~74,000 mi
2
 (191,000 km

2
) (table 4). Capacity estimates for 

this unit over the same area using E = 0.4 and 5.5 percent are included in table 4. The maximum 

capacity (for E = 2 percent) within a single 2.3 km
2
 grid cell in the underlying Pre-Tuscaloosa 

GSU is just over nine million tons (0.009 Gt); the highest capacity grid cells are shaded in blue 

(fig. 18). Note that areas with higher capacity (yellow-green-blue range) are in offshore portions 

of the SW and SE GA embayments (fig. 3), which is where the thickest accumulations of 

permeable sands and highest estimated porosities (e.g. figs. 13, 14) lie. We are most confident in 

capacity estimates for areas covered by the seven cross sections shown in fig. 4. The reason 

being that areas outside of those covered by the cross sections are outside of our area of 

geophysical log coverage (Recall this was discussed in detail in the Methodology section). So of 

the Pre-Tuscaloosa GSU areas with higher capacity, we are most confident in the onshore 

portions of the SW GA embayment, and SE GA embayment strata offshore below the Atlantic 

continental shelf. It makes sense that in central portions of the study area where post-rift 

sediments are thin, capacity estimates are low; this is the Suwannee saddle (FL/GA uplifts) area 

(figs. 3, 4, 11). 

We are less confident in the Pre-Tuscaloosa GSU highest capacity estimates (blue shaded 

areas) offshore below the eastern Gulf of Mexico (GOM) continental shelf (fig.18), and consider 

results for this area to be only reconnaissance level. Using results for E = 2 percent, this ~4,600 

km
2
 area accounts for ~13 Gt of the total capacity estimate for the Pre-Tuscaloosa GSU. In other 

words, 2.4 percent of the Pre-Tuscaloosa area accounts for 12 percent of the capacity. However 

the area is worth including here, especially since results of other reconnaissance level studies 

have suggested that offshore portions of the SW GA embayment may contain large thicknesses 

of permeable sands (e.g. Mancini et al., 1987).  
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Figure 18. Pre-Tuscaloosa GSU capacity ranges from zero (gray areas) to over nine million tons (dark 

blue areas) per 0.9 mi
2
 (2.3 km

2
) grid cell using an efficiency factor (E) of two percent. 

 

Table 4. Summary of capacity information for Pre-Tuscaloosa and Tuscaloosa GSUs.  
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The total capacity for GS of CO2 in the Tuscaloosa GSU, using E = 2 percent, is ~31 Gt 

over an area of ~65,000 mi
2
 (168,000 km

2
) (table 4). Capacity estimates for this unit over the 

same area using E = 0.4 and 5.5 percent are included in table 4. The maximum capacity within a 

single 2.3 km
2
 cell in the overlying Tuscaloosa GSU, using E = 2 percent, is just over two 

million metric tons (0.002 Gt) (fig. 19). So the capacity for GS of CO2 in the Tuscaloosa GSU is 

only ~28 percent of that estimated for the Pre-Tuscaloosa GSU. As with the Pre-Tuscaloosa 

GSU, the highest capacity estimates fall within the SW GA embayment. In contrast to the Pre-

Tuscaloosa results, most of the capacity in the Tuscaloosa GSU is onshore.  

Reasons for differences in the distribution of capacity between the two GSUs are related 

to depositional processes taking place during the two respective geologic time periods. From 

middle Jurassic to lower Cretaceous time, nearshore deposition was dominantly continental 

clastic sediments with carbonate deposition being limited to areas farther offshore near the Blake 

Plateau. By upper Cretaceous time when sea level was rising, most of the rocks being deposited 

in the SE GA embayment were carbonates (Buffler et al., 1978; Frazier and Schwimmer, 1987). 

This pattern of deposition matches the results of net sand distribution documented herein. 

 

 
Figure 19. Tuscaloosa GSU capacity ranges from zero (gray areas) to over two million tons (yellow-

orange areas) per 0.9 mi
2
 (2.3 km

2
) grid cell using an efficiency factor (E) of two percent. 

 

 

Conclusions 
 

This work surpasses the scope of previous individual studies through identification of two 

GSUs that span the GA coastal plain, parts of adjacent FL and SC, and extend out onto the 

offshore continental shelf of the Atlantic Ocean and a small area of the eastern Gulf of Mexico. 

Delineation of the subsurface geologic units was accomplished using sequence stratigraphic 

methods, which allow interpretations that should more accurately predict reservoir properties.   

Even though the results presented here provide more accurate capacity estimates than 

previously calculated in the SE US (Smyth et al., 2008), they will still need to be refined by site-

level investigations. The method for calculating capacity (MIT, 2010) is meant to be used for 
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regional assessments without refined estimates of specific intervals into which the CO2 will be 

injected. For example permeability is not considered so inter-well heterogeneity (connectedness 

of sands identified in individual wells) is not taken into account.  

The potential to store CO2 in deep (greater than 2,600 ft) subsurface geologic strata 

underlying southern GA and offshore below the Atlantic seafloor is significant. Here we present 

two new geologic sequestration units (Pre-Tuscaloosa and Tuscaloosa) identified in this area that 

are capable of storing up to 15 giga tonnes (billon metric tons) (Gt) of CO2 within clastic 

sedimentary strata.  

Previous estimates for areas surrounding and slightly overlapping our two new GSUs 

were based on limited and generalized data sets, which were primarily from research reports and 

published literature (Smyth et al., 2008). However given the information available, these 

previous estimates are still valid. 

Maps and cross sections generated during this study are consistent with earlier research 

results in terms of (1) gross vertical and lateral distribution of major geologic strata and (2) 

patterns of deposition of sedimentary strata being controlled by the following regional structural 

features: Southwest Georgia Embayment, Southeast Georgia Embayment, and the 

Central Georgia uplift/Florida Pennisular arch (referred to by some researchers as the Suwannee 

Saddle. 

 Operators of coal- and natural gas-fired power plants, and other types of industrial 

facilities, that release significant volumes CO2 to the atmosphere have options for GS in the SE 

US. 
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