19,276 research outputs found

    Identifying the NCAA Tournament Dance Card

    Get PDF
    The NCAA Basketball Tournament selection committee annually selects the Division I men\u27s teams that should receive at-large bids to the national championship tournament. Although its deliberations are shrouded in secrecy, the committee is supposed to consider a litany of team-performance statistics, many of which outsiders can reasonably estimate. Using a probit analysis on objective team data from 1994 through 1999, we developed an equation that accurately classified nearly 90 percent of 249 bubble teams during that time frame and over 85 percent for the 2000 tournament. Given the NCAA Tournament\u27s nickname of the big dance, the equation is effectively the dance card that determined whether a team got an invitation from past committees and is also a tool that could aid decision making for future committees. The accuracy of the dance card, and the factors and weights included in it, suggest that the committee is fairly predictable in its decisions, despite barbs from fans, teams, and the media

    Celebrating 25 Years of the National Association of Professors of Middle Level Education

    Get PDF
    The National Association of Professors for Middle Level Education has been focused on middle grades education since 1997. This is an introduction for the CIMLE Journal in celebration of NAPOMLE\u27s 25 anniversary in 2022

    Affine Lie Algebras in Massive Field Theory and Form-Factors from Vertex Operators

    Full text link
    We present a new application of affine Lie algebras to massive quantum field theory in 2 dimensions, by investigating the q1q\to 1 limit of the q-deformed affine sl(2)^\hat{sl(2)} symmetry of the sine-Gordon theory, this limit occurring at the free fermion point. Working in radial quantization leads to a quasi-chiral factorization of the space of fields. The conserved charges which generate the affine Lie algebra split into two independent affine algebras on this factorized space, each with level 1 in the anti-periodic sector, and level 00 in the periodic sector. The space of fields in the anti-periodic sector can be organized using level-11 highest weight representations, if one supplements the \slh algebra with the usual local integrals of motion. Introducing a particle-field duality leads to a new way of computing form-factors in radial quantization. Using the integrals of motion, a momentum space bosonization involving vertex operators is formulated. Form-factors are computed as vacuum expectation values in momentum space. (Based on talks given at the Berkeley Strings 93 conference, May 1993, and the III International Conference on Mathematical Physics, String Theory, and Quantum Gravity, Alushta, Ukraine, June 1993.)Comment: 13 pages, CLNS 93/125

    A posteriori agreement as a quality measure for readability prediction systems

    Get PDF
    All readability research is ultimately concerned with the research question whether it is possible for a prediction system to automatically determine the level of readability of an unseen text. A significant problem for such a system is that readability might depend in part on the reader. If different readers assess the readability of texts in fundamentally different ways, there is insufficient a priori agreement to justify the correctness of a readability prediction system based on the texts assessed by those readers. We built a data set of readability assessments by expert readers. We clustered the experts into groups with greater a priori agreement and then measured for each group whether classifiers trained only on data from this group exhibited a classification bias. As this was found to be the case, the classification mechanism cannot be unproblematically generalized to a different user group

    Minisuperspace Model for Revised Canonical Quantum Gravity

    Full text link
    We present a reformulation of the canonical quantization of gravity, as referred to the minisuperspace; the new approach is based on fixing a Gaussian (or synchronous) reference frame and then quantizing the system via the reconstruction of a suitable constraint; then the quantum dynamics is re-stated in a generic coordinates system and it becomes dependent on the lapse function. The analysis follows a parallelism with the case of the non-relativistic particle and leads to the minisuperspace implementation of the so-called {\em kinematical action} as proposed in \cite{M02} (here almost coinciding also with the approach presented in \cite{KT91}). The new constraint leads to a Schr\"odinger equation for the system. i.e. to non-vanishing eigenvalues for the super-Hamiltonian operator; the physical interpretation of this feature relies on the appearance of a ``dust fluid'' (non-positive definite) energy density, i.e. a kind of ``materialization'' of the reference frame. As an example of minisuperspace model, we consider a Bianchi type IX Universe, for which some dynamical implications of the revised canonical quantum gravity are discussed. We also show how, on the classical limit, the presence of the dust fluid can have relevant cosmological issues. Finally we upgrade our analysis by its extension to the generic cosmological solution, which is performed in the so-called long-wavelength approximation. In fact, near the Big-Bang, we can neglect the spatial gradients of the dynamical variables and arrive to implement, in each space point, the same minisuperspace paradigm valid for the Bianchi IX model.Comment: 16 pages, no figures, to appear on International Journal of Modern Physics

    Magnetic Wormholes and Vertex Operators

    Full text link
    We consider wormhole solutions in 2+12+1 Euclidean dimensions. A duality transformation is introduced to derive a new action from magnetic wormhole action of Gupta, Hughes, Preskill and Wise. The classical solution is presented. The vertex operators corresponding to the wormhole are derived. Conformally coupled scalars and spinors are considered in the wormhole background and the vertex operators are computed. ( To be published in Phys. Rev. D15)Comment: 18 pages of RevTex, preprint IP/BBSR/94-2

    Chain Inflation in the Landscape: "Bubble Bubble Toil and Trouble"

    Full text link
    In the model of Chain Inflation, a sequential chain of coupled scalar fields drives inflation. We consider a multidimensional potential with a large number of bowls, or local minima, separated by energy barriers: inflation takes place as the system tunnels from the highest energy bowl to another bowl of lower energy, and so on until it reaches the zero energy ground state. Such a scenario can be motivated by the many vacua in the stringy landscape, and our model can apply to other multidimensional potentials. The ''graceful exit'' problem of Old Inflation is resolved since reheating is easily achieved at each stage. Coupling between the fields is crucial to the scenario. The model is quite generic and succeeds for natural couplings and parameters. Chain inflation succeeds for a wide variety of energy scales -- for potentials ranging from 10MeV scale inflation to 101610^{16} GeV scale inflation.Comment: 31 pages, 3 figures, one reference adde

    Optical study of interactions in a d-electron Kondo lattice with ferromagnetism

    Full text link
    We report on a comprehensive optical, transport and thermodynamic study of the Zintl compound Yb14_{14}MnSb11_{11}, demonstrating that it is the first ferromagnetic Kondo lattice compound in the underscreened limit. We propose a scenerio whereby the combination of Kondo and Jahn-Teller effects provides a consistent explanation of both transport and optical data.Comment: 4 page

    Chiral Vertex Operators in Off-Conformal Theory: The Sine-Gordon Example

    Full text link
    We study chiral vertex operators in the sine-Gordon [SG] theory, viewed as an off-conformal system. We find that these operators, which would have been primary fields in the conformal limit, have interesting and, in some ways, unexpected properties in the SG model. Some of them continue to have scale- invariant dynamics even in the presence of the non-conformal cosine interaction. For instance, it is shown that the Mandelstam operator for the bosonic representation of the Fermi field does {\it not} develop a mass term in the SG theory, contrary to what the real Fermi field in the massive Thirring model is expected to do. It is also shown that in the presence of the non-conformal interactions, some vertex operators have unique Lorentz spins, while others do not.Comment: 32 pages, Univ. of Illinois Preprint # ILL-(TH)-93-1

    An Examination of NBA MVP Voting Behavior: Does Race Matter?

    Get PDF
    The selection process of the most valuable player (MVP) in the National Basketball Association (NBA) was recently questioned as to whether African-American players were treated unfairly based on their race. Using NBA voting data from the 1995-2005 seasons, we develop two empirical models in order to examine the role that a player’s race plays in the determination of this award. Our estimates imply that after controlling for player, team, and market characteristics, there is no statistically significant effect of race on the likelihood that a player will appear on an MVP ballot or on the number of votes he will receive
    corecore